資訊工程學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60
本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。
News
Browse
4 results
Search Results
Item 基於臉部偵測及CNN模型之硬體臉部辨識系統(2019) 謝斯宇; Xie, Si-Yu本論文透過FPGA(Field Programmable Gate Array)的特性,如運算速度快、功率消耗低以及可攜性高等,來實現基於簡單CNN Model LeNet-5的人臉即時辨識系統。 LeNet-5是簡單的CNN Model,對於複雜背景的影像有著極低的辨識率,為了改善其缺點,有兩種作法。第一,使用較為複雜的CNN Model如VGG-Net16等,第二,新增額外的前處理人臉偵測方式來改善。 如果使用較為複雜的CNN,在現有基於複雜的CNN電路絕大多數是使用PE (Process Element)Array的架構,每層電路共享相同的運算單元,而這種方法會造成一些問題,硬體資源消耗高、硬體設計複雜以及Latency長等問題。所以本論文是使用較為簡單的CNN來設計電路,根據軟體模型不同層的特性去做不同的設計,藉由改善電路的架構,使得每一層電路部分重疊的方式,提升電路平行計算的能力,進而提高電路的運算速度。 本論文使用簡單的CNN電路搭配人臉偵測的方式,來實現即時人臉辨識系統,不僅辨識率足以跟複雜的CNN匹敵之外,更重要的是我們只需花成本低的硬體規格就能實現實際的應用,如手機上的APP人臉解鎖功能以及家庭人臉辨識等應用,符合普及計算(Pervasive Computing)的概念。Item 基於邊緣計算和深度學習之病媒蚊分類系統(2019) 洪銘鴻; Hong, Ming-Hong由於登革熱與日本腦炎是由病毒所引起的一種傳染病,會經由蚊子傳播給人類。在最近一次 2015 年的台南市爆發登革熱的疫情,最初只出現在台南市北部地區,接著以驚人的速度擴散到全台南市,最終蔓延至台灣全島。當年,確診病例超過 4 萬人,死亡病例也高達 218 人,而且未發病的感染者約為發病者的九倍至十倍。若患者再次被病媒蚊叮咬造成交叉感染,則重症死亡率會大幅度提升至 20%以上,而且目前沒有預防疫苗,也沒有特效藥物可治療,而引發登革熱的病媒蚊為埃及斑蚊(Aedes aegypti)與白線斑蚊 (Aedes albopictus)。而日本腦炎的致死率大約為 20%以上,存活病例約有 40%有神經性或精神性的後遺症,而且亦目前沒有特效藥可治療,引發日本腦炎的病媒蚊為三斑家蚊(Culex tritaeniorhynchus)與環蚊家蚊(Culex annulus),避免病媒蚊叮咬是目前唯一的預防登革熱及日本腦炎的方法。 為解決登革熱與日本腦炎問題,本篇論文提出病媒蚊分類系統,這是一套影像分類準確率高達 98%以及計數功能的智慧捕蚊系統,其中包含邊緣計算、深度學習的影像處理和 電腦視覺,主要功能在邊緣計算為物體偵測,深度學習為斑蚊分類與計數,透過這些步驟,改善了現今捕蚊燈、滅蚊燈不能分類 (Classification)蚊子種類。並以智慧捕蚊裝置收集影像資料,主要資料收集與處理正是引發登革熱的兩種台灣常見的病媒蚊種類──白線斑蚊與埃及斑蚊以及引發日本腦炎的兩種台灣常見的病媒蚊種類──三斑家蚊與環蚊家蚊,並在分類時以斑蚊 (Aedes) 和家蚊 (Culex) 進行二元分類,由於此系統與裝置獲得更多台灣蚊子資訊,其資訊包含進入捕蚊燈的蚊子數量、種類以及時間、地點,以便後續作為對病媒蚊採取措施的重要參考依據。Item Item 以BNN與AlexNet為基礎適用於CIFAR10圖形辨識之積體電路架構設計(2017) 王愷薇; Wang, Kai-Wei本論文以FPGA實作AlexNet摺積類神經網路模型之硬體電路架構,並以CIFAR10全彩圖像資料庫作為圖像辨識數據,設計適用於該資料庫的圖形辨識電路架構,傳統的摺積類神經網路以浮點數形式存取運算所用到的相關參數,同時運算方式較為複雜,這種模式不僅會增加記憶體的存取資源消耗,也會造成運算的負擔。本論文將二元化類神經網路技術結合至電路設計中,其最主要的核心概念是將權重及運算結果透過二元化相關演算法簡化為二進制表示法,並使用XNOR做位元運算,此作法不僅能降低FPGA資源消耗,同時也能提升運算效率。 本論文選用AlexNet作為設計電路之模型,AlexNet對於全彩圖像的辨識結果優於LeNet5,而AlexNet相較於其他結構複雜的摺積類神經網路模型更適合實作於硬體電路,雖然AlexNet所使用的參數較多,以原始32bit 浮點數存取權重確實在硬體上難以實現,但利用二元化類神經網路便可將權重簡化至1bit二進位碼,而運算子則不需要使用到浮點數的加法器與乘法器,這不單是降低內建記憶體及暫存器資源使用,更提升存取記憶體的效能。 依據實驗結果,本論文所提出之硬體架構相較於近期相關研究有低面積資源消耗之優點,且辨識精確度不亞於其他研究架構,對於現今人工智慧晶片發展領域,本論文所提出之硬體架構著實具有競爭價值。