資訊工程學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60
本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。
News
Browse
3 results
Search Results
Item Multiple Policy Value MCTS 結合 Population Based Training 加強連四棋程式(2024) 蔡宜憲; Tsai, Yi-Sian電腦對局是人工智慧在計算機科學和工程方面的最古老和最著名的應用之一,而AlphaZero在棋類對局領域是一個非常強大的強化學習算法。AlphaZero是用了MCTS與深度神經網路結合的演算法。較大的神經網路在準確評估方面具有優勢,較小的神經網路在成本和效能方面具有優勢,在有限的預算下必須兩者取得平衡。Multiple Policy Value Monte Carlo Tree Search此方法結合了多個不同大小的神經網路,並保留每個神經網路的優勢。本研究以Surag Nair先生在GitHub上的AlphaZero General程式做修改,加入Multiple Policy Value Monte Carlo Tree Search,並實現在連四棋遊戲上。另外在程式中使用了Multiprocessing來加快訓練速度。最後使用了Population Based Training的方式來尋找較佳的超參數。Item 使用KataGo方法及迫著空間搜尋提升AlphaZero在六子棋的訓練成效(2023) 林育璋; Lin, Yu-Chang自從Google DeepMind提出AlphaZero演算法之後,許多使用傳統搜尋法的電腦對局程式都被AlphaZero作法取代。然而AlphaZero作法需要非常大量的算力,才能夠達到頂尖的水準,因此我們希望透過程式效能改進及傳統做法的輔助,提升AlphaZero在六子棋遊戲的訓練效率,讓我們可以使用個人電腦達到頂尖水準。本篇論文使用Alpha-Zero-General開源程式碼作為基礎,研發一支AlphaZero的六子棋程式。我們參考galvanise_zero的做法修改MCTS的搜尋方式、參考OOGiveMeFive提出的通用型Bitboard,將其進行修改後用於六子棋程式中,並且參考陽明交通大學的CZF_Connect6提出的六子棋強度改進方式。本篇論文從三個面向來加速AlphaZero的訓練效率。第一個是提升程式效能,我們分析Alpha-Zero-General的一個效能瓶頸是MCTS的部分,因此透過C++及平行化的方式重新實作MCTS,大幅提升AlphaZero的訓練效率。第二個是提升神經網路的性能,使用KataGo提出的Global Pooling及Auxiliary Policy Targets方法修改神經網路,並套用於六子棋程式中。第三個是提升訓練資料的品質,使用KataGo提出的Forced Playout and Policy Target Pruning方法及傳統的迫著空間搜尋提升訓練資料的品質。另外本篇論文提出一種新的訓練方式,提升AlphaZero加入heuristics的訓練效果。我們使用C++、平行化及批次預測的方式可以讓MCTS的搜尋效率達到26.4的加速比,並且使用Bitboard的方式可以讓迫著空間搜尋達到6.03的加速比。在短時間的訓練中,雖然使用相同時間AlphaZero方法可以訓練更多個迭代,不過使用相同時間訓練的KataGo方法與原始AlphaZero方法相比依然可以取得57.58%的勝率,且使用相同時間訓練的KataGo-TSS Hybrids方法與原始AlphaZero方法相比也可以取得70%的勝率。並且這三種作法訓練到500個迭代後與NCTU6_Level3對戰,都可以取得超過65%的勝率。Item 利用啟發式法則與數種訓練策略來評估中國跳棋程式(2023) 江曛宇; Jiang, Syun-Yu中國跳棋(Chinese Checkers)是一個知名且充滿挑戰性的完全資訊遊戲。與一些其他的傳統遊戲如五子棋、圍棋不同,賽局樹的搜索空間並不會隨著遊戲的進行而越來越小。若是單純使用AlphaZero架構之演算法,在短時間內甚至難以訓練出初學者程度之程式。過去雖有使用蒙地卡羅樹搜索法結合深度學習與強化學習,並應用於中國跳棋上的演算法,但是仍有改進的空間。若是能夠適當的加入一些中國跳棋的先備知識,應該能使棋力進一步的提升。本研究針對中國跳棋設計數種策略,修改了前代程式Jump的設計,人為的增加先備知識,以期有更好的棋力,並且針對中國跳棋在神經網路訓練初期棋力很弱的問題,提出一連串的解決方案與策略,使其能夠在不使用人為訓練資料以及預訓練的狀況下,能夠獲得一定的棋力,並且對這些策略的特點進行探討,分析出各個策略的優缺點。