資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    利用硬體加速器在RISC-V平台實現智慧手勢識別之研究
    (2024) 田敬瑄; Tien, Ching-Hsuan
    隨著手勢辨識技術在多媒體娛樂和智慧家電控制等領域的廣泛應用,隱私保護和低延遲推論速度已成為提升用戶體驗的關鍵因素。邊緣計算,由於其能在本地設備上即時處理數據,強化了數據的隱私保護並顯著減少數據傳輸和處理的延時,因而被重視。本研究開發的智慧手套手勢辨識系統採用開源的RISC-V指令集架構SoC,並在FPGA平台上實現了低成本及高效能的部署。透過整合Gemmini硬體加速器,本系統顯著提升了邊緣設備的計算效能及模型的推論速度。實驗結果顯示,配備硬體加速器的SoC相較於未搭載加速器的SoC,推論速度提升達55倍,同時維持了手勢識別的高準確度。該邊緣系統的實施不僅確保了用戶數據的安全,也通過硬體加速器顯著降低了推論時間,進一步提升了用戶體驗。本研究證明了開源技術和硬體加速器在邊緣計算領域的有效性,為未來智慧裝置的技術進步提供了一個經濟且高效的解決方案。
  • Item
    基於 AI 硬體加速器的自動化類神經網路設計與部署之研究
    (2023) 黃任慶; Huang, Ren-Ching
    由於大多邊緣裝置由於對於類神經模型推理的運算效率不佳,因此邊緣裝置通常會搭配上AI硬體加速器,來進行更有效率的運算。然而如何將類神經模型推理應用至AI硬體加速器進行加速,必須從軟體端加速器的使用,到硬體端加速器的架構,都要有深刻理解,這對於開發者來說是一個不小的挑戰。本論文研究基於RISC-V架構下的 Gemmini 硬體加速器平台,開發一套圖形介面工具。開發者根據自身的需求,在工具中選擇需求的模型架構,將其轉換成中間表達式,藉此生成模型架構程式碼,以及硬體推理程式碼。模型架構程式碼供軟體端模型訓練以及模型量化用;硬體推理程式碼供邊緣裝置利用硬體加速器進行模型推理。本論文將透過圖形介面生成之程式碼,生成基於CNN,以及GRU的兩種不同模型架構,執行於含Gemmini加速器平台的FPGA板上,以Clock Cycles為運算速度的根據,比較模型運算時使用加速器與否的差別。藉由兩種不同種類模型的比較,驗證Gemmini的加速效果及使用本研究開發之圖形介面的可行性。