資訊工程學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60
本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。
News
Browse
5 results
Search Results
Item 使用卷積神經網路進行飯店評論的情緒分析(2021) 蕭承豪; Hsiao, Cheng-Hao隨著網路與科技的蓬勃發展,產生了愈來愈多的數據與資料,就文字方面,評論方面占著一個很大一定的比例,這些評論的對象大多是人、產品、服務或活動等。其中線上旅遊論壇的興起使網路成為尋求旅行資訊的主要手段。旅行者在社交網站上相互交流並分享他們的觀點和經驗,每天產生大量評論,以至於產生在線酒店評論信息過載的問題。將近95%的旅行者在做出預訂決定之前先閱讀了在線酒店評論,並且超過三分之一的旅行者認為在網上選擇飯時,評論中表達的觀點是最關鍵的因素。因此,有效識別有益性的評論已成為重要的研究課題。 本文藉由擷取歐洲飯店515,000條客戶評論的資料做情緒分析,除了做一般的情緒分析,另外抽取詞性當作特徵,分別為完整資料集,只有形容詞跟副詞的形容詞,以及名詞還有動詞的資料集,經過卷積神經網路的訓練,並觀察實驗結果,效能的評估方式以精準率 (Precision)、召回率 (Recall) 和 F1 分數 (F1-measure, F1)作比較。Item 基於CNN對於多人環境進行人臉辨識之研究(2020) 李聿宸人臉辨識於現今社會為熱門的議題,每個人皆有獨一的臉部特徵,相較於密碼或是個人證件等傳統的識別方式,人臉辨識既不需要隨時攜帶實體證件也不用擔心忘記密碼。當經由辨識而取得臉部影像後,就能夠藉由不同的臉部特徵與人臉資料庫進行比對來驗證身分。 本研究以設置於教室上方的攝影機拍攝課堂環境,取得之臉部影像解析度較低,因此人臉特徵較不突出,且亦有光線亮度不均勻以及臉部偏移等問題,導致傳統人臉辨識效果不佳。本研究運用YOLOv3結合深度學習的人臉偵測技術取得個人的臉部影像,並搭配卷積神經網路 (Convolutional Neural Network)訓練合適的模型進行人臉辨識,對於20 × 20以上之低解析度且包含不同角度的臉部影像,皆能達到97%以上的辨識準確率。由於人臉長時間下來會有些許的變化,根據實驗結果,經由四個月後之臉部影像仍能維持94%的辨識準確率。Item 基於循環神經網路之注視區域分析(2020) 李欣芸; Lee, Hsin-Yun人類在認知學習的過程中,大部分的訊息是透過眼睛視覺所獲得,並且在視線範圍內若能找到感興趣之區域,會產生一系列的凝視與掃視反應,因此若能掌握眼球運動視覺軌跡,即能分析使用者之行為模式與認知學習歷程,而此模式已廣泛應用於各個領域之中。 過去所使用的注視追蹤方法,在蒐集注視數據資料時,通常會將使用者頭部固定,再進行注視模型訓練與分析,藉此提高訓練分類之準確率。然而當使用者頭部偏移時,則會導致注視分類預測之準確率降低,因此本研究探討非固定頭部的分類準確度。 本研究使用一般的網路攝影機,為了提升非固定頭部分類之準確度,過往的注視追蹤之研究常以眼睛外觀模型劃分注視區域,本研究則探討訓練模型架構結合卷積神經網路架構與循環神經網路之演算法,透過計算頭部姿勢預估中的俯仰角、偏航角與翻滾角加入模型訓練,使得使用者頭部能在偏移範圍於俯仰角+/-10°與偏航角+/-20°內移動,並且同時參考前一秒時間空間序列上的視線區域,再做注視點預測與分析,提高注視區域分類準確率表現。 透過本研究所提出CNN+RNN之訓練模型,在不同注視區域劃分下為2x2準確率達 98%、3x3準確率達 97%、4x4準確率達 90%、5x5準確率達 85%、6x6準確率達 80%、7x7準確率達 74%、8x8準確率達 69%、9x9準確率達 62%,相較於單一採用CNN架構訓練模型分類準確率,CNN+RNN模型架構能有效提升整體注視區域分類準確率 7~15%。Item 基於類神經網路架構早期偵測空停車格(2018) 吳明哲; Wu, Ming-Che本論文解決駕駛人耗費不必要的時間在尋找停車地點之問題。提早偵測停車格的智慧系統是重要的,駕駛可能因為分神在找尋停車格,而導致交通意外發生,且在大城市中經常發生停車格嚴重不足的問題。在本研究中,我們使用行車紀錄器蒐集共5,800部的影片資料集(駕駛人的視角),藉由深度學習的技術,建置可以偵測前方是否有空停車位的類神經網路模型。為了增進偵測效能,我們提出了一個新的損失函數以優化時序資料,最後開發出一個可以早期偵測空停車格的駕駛輔助系統。在本研究中,我們也建立了一個提早偵測空停車格的評比實驗 (Benchmark),可以讓後續相關領域的研究者評估其實驗結果。Item 結合PTZ攝影機與光學雷達之CNN虛擬圍籬系統(2018) 陳靖允; Chen, Ching-Yun本研究開發一套結合PTZ(Pan-Tilt-Zoom)攝影機與光學雷達(Light Detection and Ranging, LiDAR)之CNN(Convolutional Neural Network,卷積神經網路)虛擬圍籬系統。 虛擬圍籬與傳統的隔離方式不同,並不需要真正築起一道實體的牆壁或護欄,而是利用各種電子裝置與軟體程式的結合,建立人眼不可察覺的虛擬防線。虛擬圍籬具有下列優點:(A)低人力介入且警戒可為全天候、大範圍 (B)具機動性與擴充性 (C)不破壞原景觀 (D)即時通報且可延伸後續處理。但實際應用上,虛擬圍籬常因誤報率太高,處理和通報速度太慢等因素,尚未被大眾所接受。 本研究分別從軟硬體兩方面來提升傳統虛擬圍籬偵測與辨識的準確度與速度。在硬體方面的改良是使用LiDAR與PTZ攝影機。LiDAR所發出的紅外線不但可以做為系統的觸發器,而且它不易受天候與光影影響,可以降低誤判,提高系統的精準度與穩定度。此外,LiDAR也將偵測到的侵入物距離資訊傳送給PTZ攝影機以控制鏡頭的變焦縮放,使得拍攝到的影像都有適當的大小,增加後續CNN分類辨識的準確度。 在軟體方面的改良則是使用CNN,利用它強大的特徵學習能力,提升辨識分類的速度與準確率。本研究以不同的訓練模式以及不同的資料集前處理來進行VGG-16與Darknet-19的實驗。就訓練模式而言,使用以ImageNet大量資料訓練所得的pretrained參數,再加上與測試資料前處理類型相近的資料集進行fine-tune,可以得到最佳的成效。就資料集前處理而言,本研究將其大致分為Original(即原本的邊界框影像)、Rescaled(以程式自動將邊界框影像等比縮放置中放入符合CNN輸入尺寸的黑色或灰色底)、Matting(去背景,將背景塗成黑色或灰色)、以及Matting&Rescaled(以程式自動將去背景後的邊界框影像等比縮放置中放入符合CNN輸入尺寸的黑色或灰色底)。實驗顯示,訓練和測試都使用Rescaled版的資料集可以得到最高的mAP,其中VGG-16實驗中,訓練和測試都使用Rescaled-Grey版資料集可得到96.3%的mAP。 對於虛擬圍籬系統而言,因為侵入物件有移動的動態資訊,會造成連續畫面的變化,因此系統可經由移動物件定位法來找出侵入物件及其邊界框,不需像傳統的物件偵測系統是以單張靜態的影像畫面為輸入,必須產生和評比各種可能的物件邊界框,並浪費資源和時間在不必要的背景物件的偵測和辨識上。本研究所採用的移動物件定位法是運用三個連續畫面的連續影像相減法,並且採運作速度極快的bitwise_and函式取相減影像的交集,以得到較精確的移動前景與邊界框。此外,可用經過動態形態學填補空洞後的二值化前景影像為遮罩,與原影像或邊界框影像結合後,達到粗略的去背景(matting)效果。Matting& Rescaled-Grey版資料集在VGG-16也有很高的mAP(95.3%)。 目前本系統設定區分的侵入者類別為三類,分別是「行人」、「動物」和「非人且非動物」。使用者可以視應用場所的需求,對三個類別的侵入者做不同的處理,使後續的應用更有彈性。從整合測試的實驗結果顯示,本研究虛擬圍籬系統整體的偵測準確率mAP達95%以上,而從LiDAR觸發取像至判斷出物件類別的平均處理時間則在0.2sec.以下,是一套準確率高且速度快的實用系統。