資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    在人工智慧物聯網應用中探討能源效率和即時性使用在模型訓練上
    (2021) 梅志碩; Mei, Chih-Shuo
    神經網絡模型訓練對於特定領域的人工智慧物聯網 (AIoT) 應用是必不可少的。通常顯示卡在模型訓練期間平均可能消耗數百瓦,而搭載 GPU 的嵌入式設備在出於相同的目的可能僅消耗幾瓦,但需要更長的訓練時間。在本論文中,使用了 NVIDIA RTX 2080 Ti 顯示卡和 NVIDIA Jetson Nano 嵌入式設備進行模型訓練的實證研究。將測量到的能量消耗和訓練時間,用以比較兩個平台之間的差異。結果表明,令人驚訝的是雖然使用 Jetson Nano 的訓練時間 比使用獨立顯示卡的訓練時間慢 30 倍,但 Jetson Nano 的總能耗實際上只有一半。結果表明,當考量能源消耗的重要性大於時間性的時候,可以選擇在搭載 GPU 的嵌入式設備上進行模型 訓練以達到節省能源的效果,反之則使用配有獨立顯示卡的電腦是更佳的選擇。在這些 AI 模型訓練中,像 Nvidia Jetson Nano 這樣的配備 GPU 的嵌入式設備可能在耗能方面具有更好的性能。此外,此論文也探討了關於 AIoT 用於預測性維護的案例研究,以說明配有 GPU 的嵌入式系統在模型訓練中的優勢。在實作預測性維護的案例研究中,也使用了 NASA 提供的渦輪引擎退化模擬資料集。而案例研究結果指出在時間性上的延遲是可以被接受的情況下,配備 GPU 的嵌入式裝置是可以有效的節省能源。