資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    基於分類錯誤之線性鑑別式特徵轉換應用於大詞彙連續語音辨識
    (2009) 李鴻欣; Hung-Shin Lee
    線性鑑別分析(linear discriminant analysis, LDA)的目標在於尋找一個線性轉換,能將原始資料投射到較低維度的特徵空間,同時又能保留類別間的幾何分離度(geometric separability)。然而,LDA並不能總是保證在分類過程中產生較高的分類正確率。其中一個可能的原因在於LDA的目標函式並非直接與分類錯誤率連接,因此它也就未必適合在某特定分類器控制下的分類規則,自動語音辨識(automatic speech recognition, ASR)就是一個很好的例子。在本篇論文中,我們藉著探索每一對容易混淆之音素類別間的經驗分類錯誤率(empirical classification error rate)與馬氏距離(Mahalanobis distance)的關係,擴展了傳統的LDA,並且將原來的類別間散佈矩陣(between-class scatter),從每一對類別間的歐式距離(Euclidean distance)估算,修改為它們的成對經驗分類正確率。這個新方法不僅保留了原本LDA就具有的輕省可解性,同時無須預設資料是為何種機率分佈。 另一方面,我們更進一步提出一種嶄新的線性鑑別式特徵擷取方法,稱之為普遍化相似度比率鑑別分析(generalized likelihood ratio discriminant analysis, GLRDA),其旨在利用相似度比率檢驗(likelihood ratio test)的概念尋求一個較低維度的特徵空間。GLRDA不僅考慮了全體資料的異方差性(heteroscedasticity),即所有類別之共變異矩陣可被彈性地視為相異;並且在分類上,能藉由最小化類別間最混淆之情況(由虛無假設(null hypothesis)所描述)的發生機率,而求得有助於分類效果提升的較低維度特徵子空間。同時,我們也證明了LDA與異方差性線性鑑別分析(heteroscedastic linear discriminant analysis, HLDA)可被視為GLRDA的兩種特例。再者,為了增進語音特徵的強健性,GLRDA更可進一步地與辨識器所提供的經驗混淆資訊結合。 實驗結果顯示,在中文大詞彙連續語音辨識系統中,我們提出的方法都比LDA或其它現有的改進方法,如HLDA等,有較佳的表現。