資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    以支持向量機為基礎之問卷填答識別研究
    (2012) 簡培修; Pei Hsiu Chien
    在現今電腦網路蓬勃發展的世代,部分的紙本問卷已轉成線上問卷,方便快速統計結果,然而仍然有許多電腦與網路不便使用的場合,例如:餐廳用餐、商店購物、銀行存提款、參加產品發表會或研討會、或是到政府機關洽公等,在這些場景中,通常不方便提供電腦及網路供問卷填寫,若要在第一時間取得意見回饋,紙本型式的問卷還是最直接且最便利的管道。而一般問卷設計,為了讓填答者方便填寫,以及快速統計填答結果,大部分會以選擇題方式呈現,不論是學術研究領域或是商業軟體,對這一類型問題的處理方式仍以計算填答區域中的可視點數量,作為是否有被標記之主要依據,然而雜訊問題以及填答者填答方式的多樣性(勾選、畫叉、塗滿等),經常讓這些計算可視點數的方法無法正確辨識選項是否被標記。 本論文提出一套完整的問卷處理流程,從空白的問卷自動擷取填答區域,並依照題目順序加以群組,輔助問卷設計者建立填答區域的model檔案;然後以支持向量機方法結合輔助判定規則,進行標記自動辨識,利用機器學習的途徑解決雜訊的問題,提高辨識正確率;同時嘗試利用「填答者意圖」的理念,嘗試解決填答者塗改答案的問題,而在實驗部份,以兩個真實的問卷應用驗證系統效能,另外,擴展系統功能為大學新生智慧財產權測驗進行評分。實驗結果顯示,SVM對於選項是否被標記的正確率達到99%以上;另一方面,以問題為基礎的正確率也達98%以上。最後本論文亦提出混合型支持向量機的作法來處理非一般性的選項符號,經實驗的結果顯示,將混合型支持向量機應用在上述的問卷與試卷,其正確率也都可達95%以上,表示混合型的SVM可應用於對正確率要求不是那麼高的問卷。