物理學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56

本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。

近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。

本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。

News

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    稀土鐵石榴石與鈣鈦礦奈米材料之結構、磁性和應用
    (2023) 劉仕渝; Liu, Shi-Yu
    鈣鈦礦和稀土石榴(REIG)薄膜具有優異的光學和磁光特性。因此,將這兩種材料結合在一起可以創造出具有可調控光學和磁性性能的異質結構,並應用於光學通信、光學記憶和磁光元件等領域。在本研究中,我們將深入探討鈣鈦礦和REIG薄膜各自的潛在價值。近年來,一些研究表明使用稀土元素(RE)元素代替釔(Y)來調節石榴石薄膜的應變誘導磁異向性。REIG薄膜(~100 nm)藉由脈衝雷射沉積法製備於(111)取向的釔鋁石榴石(YAG)基板上。釤、钬和釔鐵石榴石(SmIG, HoIG, and YIG)具有垂直於膜面的壓縮應變,而鉺和铥鐵石榴石(ErIG and TmIG)具有弱的拉伸應變。由於負磁致伸縮常數,因此SmIG和HoIG薄膜表現出相對強的垂直磁異向性(PMA)。隨著技術的發展,對高存儲容量和快訪問速度的需求不斷增加。因此我們選擇對擁有相對強PMA的SmIG薄膜進一步研究。藉由降低SmIG薄膜厚度,可使其具有更強的壓縮應變,進而獲得更強的PMA。相比之下,YIG在30-120奈米區間仍展現水平磁異向性(IMA)。這一發現表明磁性能受Y:Sm比的顯著影響。隨後,我們製備了一系列不同厚度、Sm摻雜濃度的SmYIG薄膜。振動樣品磁力計揭露隨著厚度的遞減和Sm摻雜濃度的增加,可使SmYIG薄膜具有較強的PMA。此外,我們展示了在不同Sm摻雜濃度下,SmYIG薄膜的臨界厚度。為基於REIG薄膜的高密度磁信息存儲鋪平道路。YIG與反鐵磁材料的結合因其在自旋泵等應用中的潛力而備受關注。因此,我們於YIG薄膜上沉積氧化鈷(CoOx)薄膜以研究介面效應。由於CoOx薄膜於高溫缺氧環境下製備,所以其表面區域由純CoO組成,界面區域則為CoO和Co的混合物。CoOx/YIG薄膜不僅表現出低溫下由CoO提供的磁耦合,還表現出由鐵磁Co提供室溫負交換偏置(RT-NEB)。與CoOx/YIG薄膜相比,我們於YIG薄膜上製造了進一步氧化的CoO薄膜,並觀察到室溫正交換偏置(RT-PEB)。RT-PEB隨著外加磁化場增加而增加,並在外加磁化場為500 Oe時飽和。隨著溫度降低,PEB 逐漸轉變為 NEB。這些結果清楚地表明 CoO/YIG 雙層系統中PEB和NEB共存,而PEB歸因於CoO界面自旋的反平行耦合,而NEB歸因於AFM-FM耦合。有機-無機鈣鈦礦(MAPbBr3)/鐵磁異質結構在光控自旋電子元件中已被廣泛探討。然而使用金屬鐵磁層作為底部電極仍然是一個挑戰。因此,我們提出插入氧化鋁(AlOx)或石墨烯(Gr)層的超薄異質界面來改善均勻性。通過原子力顯微鏡和掃描電子顯微鏡,我們觀察到MAPbBr3層成功地形成了緻密的連續薄膜。此外,AlO¬x或Gr層的存在可以有效地防止鈣鈦礦和鐵磁金屬薄膜之間的氧化和界面擴散。然而,MAPbBr3層在環境下很容易受溫度、濕度、氧氣濃度影響而分解。因此,我們製備了全無機銫鉛溴化物鈣鈦礦量子點(CsPbBr3 QDs)來替代鐵磁層上方的 MAPbBr3,並研究了藍光雷射對磁性的影響。隨著雷射照射時間的增加,CsPbBr3 QDs的表面形貌和特徵尺寸發生了顯著變化並逐漸演變,引發了一系列氧化還原和界面擴散過程,特別是在 CsPbBr3 QDs/Co異質結構的界面處。這些結果開啟了鈣鈦礦/鐵磁異質結構在自旋電子學應用研究。
  • Item
    鈣鈦礦與磁性金屬、二硫化鉬之介面特性分析
    (2022) 林子恩; Lin, Zih-En
    鈣鈦礦為新興太陽能電池材料,並且近年已有許多研究報導其光電性質[1,2],但少有提及表面形貌。在先前研究中我們發現鈣鈦礦MAPbBr3無法在鐵鈀合金表面形成均勻且連續的薄膜,會呈現奈米柱狀結構並且有裸露的合金金屬層[9]。在本實驗中,我們發現以石墨烯層插層於鈣鈦礦與鐵磁層之間可使鈣鈦礦形成均勻連續薄膜。由原子力顯微鏡 (AFM) 剖面圖可觀察到:在鐵磁層表面粗糙度小於1 nm,在轉移石墨烯後約有 2 nm,在旋塗鈣鈦礦之後約有6 nm。在AFM形貌圖以及剖面圖可以看出鈣鈦礦於石墨烯上形成連續薄膜。此技術應用於元件製成可防止鈣鈦礦與金屬層的層間短路,使元件正常運作。二硫化鉬具有良好的載子遷移率,可作半導體材料,但仍有光吸收率相對不高的缺點[3]。鈣鈦礦/二硫化鉬異質結構具有較高光吸收率。但雖有許多關於鈣鈦礦/二硫化鉬結構光電性質的文章[4,5],但對於鈣鈦礦在二硫化鉬上表面形貌的研究仍然缺乏。將鈣鈦礦旋塗於二硫化鉬上之後,在AFM形貌圖仍可分辨二硫化鉬的形狀,並且可見在二硫化鉬上的鈣鈦礦較基板上的緻密。在SEM圖的分析中,在二硫化鉬上的鈣鈦礦粒徑約在20 nm,在基板上約在30 nm。旋塗鈣鈦礦會造成二硫化鉬光致發光 (PL) 峰值的猝滅,並且造成峰值紅移。依文獻報導猝滅是因為鈣鈦礦到二硫化鉬的電荷轉移,紅移是因為二硫化鉬上量子點的n型摻雜效應[4]。形狀會影響二硫化鉬PL峰值。在旋塗鈣鈦礦後,缺角三角形二硫化鉬的PL峰值較三角形位移多,在3 ~12 nm區間,三角形的位移則在3 nm以內。在旋塗鈣鈦礦之後量測鈣鈦礦PL峰值位置,缺角三角形上的鈣鈦礦PL峰值比起三角形二硫化鉬藍移3 ~ 5 nm。文獻[52]中提及鈣鈦礦顆粒大小會影響PL峰值高低,我們推測可能由於三角形與缺角三角形上鈣鈦礦顆粒大小差異而影響PL峰值,但仍需進一步實驗確認。以450 nm藍光雷射照射鈣鈦礦/二硫化鉬結構,其中二硫化鉬從單層至6層,發現二硫化鉬PL峰值幾乎沒有變化,但峰值強度有減少的現象。
  • Item
    鈣鈦礦與鐵磁層交互作用與磁阻元件製作
    (2021) 吳柄村; Wu, Bing-Tsun
    在先前的研究中,我們發現在FePd薄膜上成長的MAPbBr3會是離散圓盤狀的鈣鈦礦,對於製作元件來說這會導致裸露的FePd薄膜讓電子直接短路,於是在本研究中我們利用了氧化鋁(AlOx)作為插層,在鈣鈦礦MAPbBr3與鐵磁層Co和Fe中間插入AlOx薄膜,成功成長出連續性且均勻的MAPbBr3薄膜,根據原子力顯微鏡顯示其粗糙度約為15 nm,磁光柯爾顯微鏡的結果也顯示出旋塗上MAPbBr3薄膜不會對下方鐵磁層磁性有所影響。在近期的研究顯示出CsPbBr3相對於MAPbBr3具有較高的熱穩定性,且我們發現CsPbBr3旋塗於金屬層上為連續均勻的薄膜。根據上述的結果,鈣鈦礦CsPbBr3可能具有高的應用潛力。因此我們對於CsPbBr3與鐵磁層的交互作用進行研究。我們在方格陣列Co薄膜厚度分別為6 nm、10 nm、12 nm與16 nm旋塗上CsPbBr3,此四種樣品在旋塗CsPbBr3前後的矯頑場均無改變,接著觀察到6 nm與10 nm樣品的矯頑場會隨著第一次雷射光照射的時間有逐漸降低的趨勢,其中10 nm的樣品在照射24分鐘後會量測不到磁性,然後在關閉雷射後放置一小時並再次照光30分鐘後,此時的矯頑場會提升至74.5 Oe,而12 nm與16 nm的樣品則有相反的現象,在雷射光照射下,樣品的矯頑場會隨著雷射照射時間有逐漸增加的趨勢,其中12 nm的樣品在照射28分鐘後會量測不到磁性,而在關閉雷射一段時間後矯頑場會提升至150 Oe,從結果也能發現當雷射光照射時,如果矯頑場有變化且磁性還能被量測到的樣品,在放置一段時間後,矯頑場並不會有回復的特性,根據原子力顯微鏡也能觀察到當給予兩次30分鐘的雷射照光時,粗糙度會從17.9 nm提升至22 nm與27.6 nm。因此,我們推測藍光雷射的照射會改變CsPbBr3的特性,同時也會改變下方的磁性金屬層。
  • Item
    Ba(B’1/3B”2/3)O3之材料特性研究與在天線方面應用
    (2014) 陳美瑜; MeiYu Chen
    本論文主要分成兩部分,主要目的在探討Ba(B’1/3B”2/3)O3 鈣鈦礦結構行為。Ba(B’1/3B”2/3)O3為工業上主要的微波介電材料,其中Ba(Mg1/3Ta2/3)O3更是以低介電損失而聞名。本文中將利用第一原理模擬計算去推測完美的Ba(B’1/3B”2/3)O3晶體其體積模量(bulk modulus), 包含拉曼與紅外線吸收的聲子振動行為,以及由聲子與電子貢獻的介電常數。另一方面利用Ba(Mg1/3Ta2/3)O3材料去設計一個介電共振天線。首先,利用第一原理模擬出Ba(Mg1/3Ta2/3)O3與Ba(Mg1/3Nb2/3)O3的體積模量分別為156 GPa與258 GPa。Ikawa et al 教授的論文(1998)中顯示了實驗Ba(Mg1/3Ta2/3)O3的體積模量為154 GPa,這實驗結果與本論文中模擬體積模量相當接近。可惜的是 Ba(Mg1/3Nb2/3)O3材料並沒有實驗的體積模量數據可供比較。第一原理也可分析並提供Ba(B’1/3B”2/3)O3簡正振動模的頻率與行為,包含了九個拉曼聲子,十六個紅外聲子以及三個無法激發的聲子振動模。詳細的分類與振動型式可見附錄一。經由第一原理推測出的Ba(B’1/3B”2/3)O3單晶理論頻率與參考論文中的陶瓷多晶樣品實驗頻率相當的接近。在計算介電常數上,Born and Huang 提供了有效電荷模型可計算由聲子提供的介電貢獻。在微波範圍中,只要考慮聲子與電子的介電貢獻,經由計算後,模擬Ba(Mg1/3Ta2/3)O3 的聲子與電子介電貢獻分別為23.4 與 4.14。此結果與紅外吸收實驗所得知結果相當接近(εr(phonon)=23.3 and εr(electron)=4.4). 而 Ba(Mg1/3Nb2/3)O3的理論推測值結果也相當符合實驗。而有四個對介電貢獻貢獻重大的聲子分別為2Eu, 2A2u, 4Eu, 與3A2u,其中兩個聲子(2Eu and 2A2u) 為鋇離子與其他離子的相對運動;而另外兩個聲子(4Eu, 3A2u) 為B” 離子與氧的的相對運動。經由辨別各聲子的運動行為,我們可以解釋參雜不同雜質的Ba(B’1/3B”2/3)O3聲子改變行為,例如SrxBa1-x(Mg1/3Ta2/3)O3 (x< 0.5)。 在參雜量小於0.5 ,拉曼光譜並無相變,兩個A1g 特徵模(420 cm-1 and 800 cm-1)卻有不同的頻率改變行為。這可以合理推測鍶離子偏好位於鋇離子與鎂離子的位置,而非鉭離子的位置。而且因為鍶偏好佔據鋇離子位置上而且鍶離子具有較小的質量與較大的Born 有效電荷導致隨著參雜濃度增加,樣品的介電常數也隨之增加。在Ba(B’1/3B”2/3)O3 的應用上,本文使用Ba(Mg1/3Ta2/3)O3 材料設計一個介電共振天線,其主要應用在無線通訊方面,共振頻率在2.4 GHz 至 2.484 GHz。此天線在2.44 GHz中有最小的回饋損失(Return loss) -34.67 (dB),與最強的效率(68 %)與天線增益(5.13)。在3D的輻射途中,天線的xy 平面具有類似全方面的輻射圖,但是在y-z與 x-z 平面表現出定向的輻射。
  • Item
    xLa(Mg1/2Sn1/2)O3-(1-x)La(Mg1/2Ti1/2)O3微波陶瓷材料之拉曼光譜與延伸x光吸收精細結構分析
    (2007) 余承遠; Cheng Yuan Yu
    本文利用拉曼散射、X光繞射和延伸X光精細結構吸收譜等光學方法來測量1:1結構A(B’1/2B”1/2)O3陶瓷家族中x La(Mg1/2Sn1/2)O3-(1-x) La(Mg1/2Ti1/2)O3鈣鈦礦陶瓷中氧八面體結構與其微波性質的關連性。這系列樣品共有五個,x代表錫原子的濃度,從0、0.25、0.5、0.75到1。在不同濃度的錫原子摻雜,Q×f值跟隨改變,隨著錫原子濃度的上升,介電係數下降。從X光吸收譜可以很明確知道錫原子是取代鈦原子的晶格位置,由於錫原子離子半徑較鈦原子大,所以當錫原子掺雜濃度越多時,錫與氧的鍵長增加,驗證氧八面體體積隨著錫原子濃度上升而增加,而在A位置的鑭原子與氧原子的鍵長隨著錫濃度之增加而減少,也就是鑭與氧形成的LaO8體積減少。從拉曼實驗顯示高頻部份與A1g(O)振動類似的振動模有聲子頻率紅移的現象,這也證明了錫與氧的鍵長增加,氧八面體體積增加,但是摻雜的錫原子較重使得氧八面體內部密度變大,造成介電常數減少。另一方面,部分鑭跟氧振動有聲子頻率藍移的現象,是與鑭原子形成之氧LaO8體積變小有關。Q×f值與聲子半寬度成反比,並且在錫原子與鈦原子掺雜比例相同為1:1時為最低,波的傳遞最差。從拉曼實驗及X光吸收譜實驗都顯示本文材料的微波特性與氧八面體微觀結構直接相關。
  • Item
    A(B’1/3B”2/3)O3介電陶瓷之微觀結構與微波特質關聯性研究
    (2006) 陳美瑜; Mei-Yu Chen
    本文利用拉曼散射、X光繞射和延伸X光吸收譜等光學方法來測量A(B’1/3B”2/3)O3鈣鈦礦陶瓷中氧八面體結構、 1:2有序結構與其微波性質的關連性。樣品共有三組,第一組樣品為不同燒結條件的Ba(Mg1/3Ta2/3)O3。此組樣品皆為Q×f值非常高的樣品,X光繞射分析發現1:2有序程度高其Q×f值越高。此組Ba(Mg1/3Ta2/3)O3樣品的微觀結構非常相近,氧八面體體積差異無法由拉曼散射和X光吸收實驗解析。第二組樣品為鎳掺雜之Ba(Mg1/3Ta2/3)O3,即xBa(Ni1/3Ta2/3)O3 +(1-x)Ba(Mg1/3Ta2/3)O3 (x=0~0.03)。X光吸收譜可以很明確知道鎳原子是取代鎂原子的晶格位置,而當鎳掺雜濃度越多時,氧八面體越緊密,此時介電常數也隨之減小;且鎳掺雜的越多,1:2有序結構被破壞的程度愈高,Q×f值也隨之降低。第三組樣品是燒結溫度介於1350~1550oC的五個Ba(Co1/3Nb2/3)O3陶瓷樣品。當燒結溫度為1400oC時,實驗發現Ba(Co1/3Nb2/3)O3具有最小的介電常數和最大的Q×f值。此樣品的氧八面體也最緊密、1:2有序程度也最好。燒結溫度高於1400oC之樣品,介電常數開始變大、Q×f值變小,且氧八面體結構開始鬆散、1:2有序程度變差。實驗顯示燒結條件會強烈的影響到晶體內氧八面體結構與1:2有序程度,其微波特性與氧八面體微觀結構直接相關。