物理學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56

本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。

近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。

本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。

News

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    二硫化鉬相關異質結構分析
    (2021) 許銓喆; Hsu, Chuan-Che
    我們分析二硫化鉬異質結構的物理特性,我們將鐵磁性材料(鐵、鈷鈀合金)和功能性材料(金、C60)鍍在二硫化鉬的薄片上。所有實驗中的二硫化鉬都使用化學氣相沉積(CVD)來製備於二氧化矽/矽(1 0 0)上。在鍍上異質結構之前,我們都會利用原子力顯微鏡(AFM)、光致發光光譜(PL)和拉曼光譜(Raman)來檢查二硫化鉬的基本性質。形貌上,發現一些有趣的現象:高溫下(約500 k)在二硫化鉬上鈷鈀合金的實驗中觀察到有奈米顆粒會聚集在單層二硫化鉬的邊緣,然而在多層二硫化鉬中這些奈米顆粒則在每層邊緣平行排列,且我們也觀察到光致發光的quenched (淬滅)現象,這證明高溫下鈷鈀合金也有覆蓋在二硫化鉬的平台表面上且非常的平坦,粗糙度約小於±0.5 nm,相較之下,常溫下成長在二硫化鉬的鈷鈀合金薄膜卻很粗糙(粗糙度~±2 nm)。再來是關於二硫化鉬上金(2~8 nm),我們觀察到高度反轉的現象。鍍金前,二硫化鉬到基板二氧化矽的台階高度為 +0.66 nm,這大約是正常的二硫化鉬的單層厚度。鍍金後,二硫化鉬到基板之間的高度反轉成(約-1.0至-3.5 nm)。此高度反轉現象的原因是金在二硫化鉬和基板上的不同生長模式,且這機制會取決於金的鍍膜時的溫度和金的厚度。關於磁性方面,令人驚訝的是我們觀察到鐵磁性材料(鐵、鈷鈀合金)/二硫化鉬與旁邊的基板二氧化矽之間有magnetic decoupling(磁去耦合)的現象。儘管二硫化鉬厚度(~0.66 nm)比鐵或鈷鈀合金的厚度更薄,關於3.6 nm的鐵在二硫化鉬上的矯頑場 (Hc) 為 28 ±5 Oe,然旁邊區域基板二氧化矽上的3.6 nm Fe的Hc約為 58 ±5 Oe,可看出矯頑場有明顯的差異(約30 Oe),之所以會有magnetic decoupling是由於鐵在不同基材上具有明顯的界面的磁各異向性。且也觀察到鈷鈀合金在二硫化鉬上也有類似的現象,在二硫化鉬上的鈷鈀合金(8 nm)的Hc為 52 ±3 Oe,旁邊的基板二氧化矽上的鈷鈀合金Hc 為 64 ±3 Oe,可得知鈷鈀合金上也會觀察到magnetic decoupling的現象。 最後,關於有機材料在二硫化鉬上的研究,隨著C60覆蓋度的增加,PL峰值從原本是二硫化鉬主導的1.83 eV變為C60主導的1.69 eV,此外在 C60/二硫化鉬這異質結構上證明了連續雷射會導致C60脫附。大約10 mW/µm2 的雷射功率就足以讓二硫化鉬薄片中的 20 nm C60脫附,所以可用這方法設計約為 500 nm微觀圖案。除了形態結構之外,還通過連續雷射誘導C60脫附的方法,來觀察在C60/二硫化鉬上微觀圖形的PL,關於上述在二維材料二硫化鉬基本研究(形貌,磁性,有機材料雕製微觀圖形),相信這對未來的二維材料的二硫化鉬自旋電子應用或元件設非常有幫助。
  • Item
    紅熒烯對鎳/矽(100)系統磁性與結構的影響之研究
    (2021) 李有庠; Li, You-Siang
    新興半導體材料的研究日益增長,近年來以紅熒烯為主軸的研究也相當活躍。鐵磁性材料會受紅熒烯影響而改變晶體結構,而本實驗室近年來研究亦指出鐵磁材料鈷受到紅熒烯介面影響在晶體結構以及磁域翻轉的描述有卓越的研究成果。鎳受到紅熒烯的影響,產生磁性與結構上的變化,成為本論文研究重點。本研究利用磁光柯爾效應儀、原子力顯微鏡、磁光柯爾顯微鏡、X光繞射儀、X光反射儀與X光電子能譜儀,去探討鎳/紅熒烯/矽(100)系統的結構與磁性變化。第一部分在鎳/矽(100)系統中,磁性量測矯頑力隨薄膜厚度增加的變化,矯頑力在鎳厚度28奈米時由50 Oe上升至100 Oe左右,而在鎳厚度約28奈米時透過X光繞射確認鎳薄膜開始出現了Ni(200)及Ni(220)兩個磁化難軸的晶向;第二部分分別在鎳的上方及下方加入一層紅熒烯,並從結構分析上得知鎳的晶體結構會因為紅熒烯的加入使得晶粒的增長更加明顯,並且在鎳與紅熒烯的介面層有化學鍵結的產生。而在第三部分鎳/紅熒烯/矽(100)系統中透過加入少量而不同厚度紅熒烯,觀察上層鎳薄膜的磁性變化,在加入少量紅熒烯之後,矯頑力在鎳厚度28奈米時由50 Oe巨幅上升至150 Oe左右,除了從第二部分即可得知的結構變化外,配合科爾顯微鏡以及原子力顯微鏡的測量得知表面顆粒造成的磁性缺陷也扮演著影響磁性的重要角色。
  • Item
    硫酸鈉與硼酸溶液對導電玻璃ITO上鍍鈷的影響
    (2012) 陳文賓; Wen-bin Chen
    本研究探討硫酸鈉與硼酸溶液對導電玻璃ITO上鍍鈷的影響。以循環伏安法找出適合的電鍍電壓,並改變不同的電解質輔助液探討對鈷膜表面的影響。我們藉由金相顯微鏡、原子力顯微鏡對鈷膜表面進行觀察,再以固定電鍍電壓的方式,分析得到電流對時間的關係,判定鈷在ITO上為接近瞬時成核的機制,並利用磁光柯爾效應測量鈷膜的磁性。 在實驗的過程中我們發現,電解質輔助液硫酸鈉以及硼酸各有其優缺點,硫酸鈉幫助我們決定所需要電鍍的電壓以及增加還原電流,硼酸輔助液不僅可以抑制產生Co的氫氧化物,它還能讓薄膜均勻成長。我們發現硼酸的濃度明顯影響Co島的結構,並進而改變磁性之量測結果。
  • Item
    鈷在鉑上形成超尖磁性奈米針尖之研究
    (2009) 江佳倫; Chia-lun, Chiang
    我們利用場離子顯微鏡在超高真空的環境中觀察兩種磁性奈米針尖的成長,一種是利用表面皺化機制形成的鈷鉑合金金字塔形奈米針尖;另一種是藉由鈷在鉑(111)面的S. K. mode長成以鉑為基底的鈷奈米針尖。前者針尖生長於皺化形成的鈷鉑合金多面體之稜線交接處,分別位於{531}及{210}切面,{531}切面的金字塔是由擴張的{111}、{110}、{311}切面堆積,{210}切面的金字塔則由擴張的{110}及兩個{311}切面組成。而後者針尖是在室溫及20K時鍍鈷4~5ML於鉑(111)面,鈷原子先依鉑基底以FCC結構排列,再於其上堆積單顆、雙顆或三顆原子團,這些在鉑(111)面成長的鈷原子團即是一種無特定針形的奈米針尖。
  • Item
    鈷,鐵與紅熒烯在銥(111)上的表面結構與磁性研究
    (2017) 江培成; Jiang, Pei-Cheng
    無中文摘要
  • Item
    鈷奈米結構的磁性研究
    (2016) 張丞勛; Chang, Cheng-Hsun-Tony
    n/a