物理學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56
本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。
近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。
本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。
News
Browse
6 results
Search Results
Item 稀土鐵石榴石與鈣鈦礦奈米材料之結構、磁性和應用(2023) 劉仕渝; Liu, Shi-Yu鈣鈦礦和稀土石榴(REIG)薄膜具有優異的光學和磁光特性。因此,將這兩種材料結合在一起可以創造出具有可調控光學和磁性性能的異質結構,並應用於光學通信、光學記憶和磁光元件等領域。在本研究中,我們將深入探討鈣鈦礦和REIG薄膜各自的潛在價值。近年來,一些研究表明使用稀土元素(RE)元素代替釔(Y)來調節石榴石薄膜的應變誘導磁異向性。REIG薄膜(~100 nm)藉由脈衝雷射沉積法製備於(111)取向的釔鋁石榴石(YAG)基板上。釤、钬和釔鐵石榴石(SmIG, HoIG, and YIG)具有垂直於膜面的壓縮應變,而鉺和铥鐵石榴石(ErIG and TmIG)具有弱的拉伸應變。由於負磁致伸縮常數,因此SmIG和HoIG薄膜表現出相對強的垂直磁異向性(PMA)。隨著技術的發展,對高存儲容量和快訪問速度的需求不斷增加。因此我們選擇對擁有相對強PMA的SmIG薄膜進一步研究。藉由降低SmIG薄膜厚度,可使其具有更強的壓縮應變,進而獲得更強的PMA。相比之下,YIG在30-120奈米區間仍展現水平磁異向性(IMA)。這一發現表明磁性能受Y:Sm比的顯著影響。隨後,我們製備了一系列不同厚度、Sm摻雜濃度的SmYIG薄膜。振動樣品磁力計揭露隨著厚度的遞減和Sm摻雜濃度的增加,可使SmYIG薄膜具有較強的PMA。此外,我們展示了在不同Sm摻雜濃度下,SmYIG薄膜的臨界厚度。為基於REIG薄膜的高密度磁信息存儲鋪平道路。YIG與反鐵磁材料的結合因其在自旋泵等應用中的潛力而備受關注。因此,我們於YIG薄膜上沉積氧化鈷(CoOx)薄膜以研究介面效應。由於CoOx薄膜於高溫缺氧環境下製備,所以其表面區域由純CoO組成,界面區域則為CoO和Co的混合物。CoOx/YIG薄膜不僅表現出低溫下由CoO提供的磁耦合,還表現出由鐵磁Co提供室溫負交換偏置(RT-NEB)。與CoOx/YIG薄膜相比,我們於YIG薄膜上製造了進一步氧化的CoO薄膜,並觀察到室溫正交換偏置(RT-PEB)。RT-PEB隨著外加磁化場增加而增加,並在外加磁化場為500 Oe時飽和。隨著溫度降低,PEB 逐漸轉變為 NEB。這些結果清楚地表明 CoO/YIG 雙層系統中PEB和NEB共存,而PEB歸因於CoO界面自旋的反平行耦合,而NEB歸因於AFM-FM耦合。有機-無機鈣鈦礦(MAPbBr3)/鐵磁異質結構在光控自旋電子元件中已被廣泛探討。然而使用金屬鐵磁層作為底部電極仍然是一個挑戰。因此,我們提出插入氧化鋁(AlOx)或石墨烯(Gr)層的超薄異質界面來改善均勻性。通過原子力顯微鏡和掃描電子顯微鏡,我們觀察到MAPbBr3層成功地形成了緻密的連續薄膜。此外,AlO¬x或Gr層的存在可以有效地防止鈣鈦礦和鐵磁金屬薄膜之間的氧化和界面擴散。然而,MAPbBr3層在環境下很容易受溫度、濕度、氧氣濃度影響而分解。因此,我們製備了全無機銫鉛溴化物鈣鈦礦量子點(CsPbBr3 QDs)來替代鐵磁層上方的 MAPbBr3,並研究了藍光雷射對磁性的影響。隨著雷射照射時間的增加,CsPbBr3 QDs的表面形貌和特徵尺寸發生了顯著變化並逐漸演變,引發了一系列氧化還原和界面擴散過程,特別是在 CsPbBr3 QDs/Co異質結構的界面處。這些結果開啟了鈣鈦礦/鐵磁異質結構在自旋電子學應用研究。Item 氧化鈷在11原子鈷層/矽(111)上交換偏移相圖與鈷在銀(√3×√3)/矽(111)之磁性研究(2011) 許志榮整個論文架構分為三大主題:即「超高真空系統之搬遷與設置」、「y ML CoO/11 ML Co/Si(111)」和「y ML Co/Ag/Si(111)- √3 × √3」之研究。「超高真空系統之搬遷與設置」包括腔體拆解、組裝與表面物理實驗室的規劃以及採取各個步驟和設計流程的原因。在反鐵磁層與鐵磁層「y ML CoO/11 ML Co/Si(111)」研究當y = 5、10、15時,其交換偏移作用是屬於哪一種類型(HE不為零或者Hc變大),實驗的方法是採用「零場冷卻」與「場冷卻」兩種方式來對照,並期許能將實驗結果彙整成交換偏移相圖。「y ML Co/Ag/Si(111)- √3 × √3」先將Ag與Si(111)形成結構為√3 × √3的表面合金,之後再鍍上不同層數的Co膜,以磁光柯爾效應儀研究一系列磁性行為的變化。在反鐵磁層與鐵磁層系統「y ML CoO/11 ML Co/Si(111)」研究結果,在y ≤ 10時,是屬於Hc變大之交換偏移模型,其原因為低層數CoO以奈米顆粒的方式堆積,使得其磁異向性相較外加場來說是比較小,因此會讓柯爾訊號Hc增大。在y ≥ 15時,是屬於HE不為零之交換偏移模型,其原因為高層數CoO在11 ML Co/Si(111)上形成膜,使得其磁異向性相較外加場來說是比較大,因此會讓柯爾訊號HE不為零,最後,彙整交換偏移相圖,交換偏移相圖中分成三個相位,即HE不為零之交換偏移、Hc變大之交換偏移和沒發生交換偏移。「y ML Co/Ag/Si(111)- √3 × √3」研究結果,雖然在y<4.38時沒量測到縱向柯爾訊號,然而從4.38 ≤ y≤10.21之縱向柯爾訊號做線性推斷其通過原點,表示Ag與Si(111)形成Ag/Si(111)- √3 × √3表面合金之後,能有效消除死層,阻止Co與Si(111)形成矽化物。且在4.38≦y≦10.21時,鍍於表面合金Ag/Si(111)- √3 × √3上的Co膜其易磁化軸為水平方向。在其相轉變研究方面,3.65 ML Co/ Ag/Si(111)- √3 × √3 (Ag的殘存量0.48 ML)推估其居里溫度約在275 K到300 K之間,3.51 ML Co/ Ag/Si(111)- √3 × √3系統(其中Ag的殘存量為0.53 ML)中,3.51 ML Co的厚度仍然太薄,3.51 ML Co/ Ag/Si(111)- √3 × √3的居里溫度可以推估小於150 K。Item 製作反鐵磁性的氧化鈷在鈷/矽(111)超薄膜上之交換偏移作用研究(2009) 莊家翔; Chiashain Chuang交換偏移作用在半導體上的想法已經被初步的完成。為了完成這個想法,鐵磁性的元素-鈷,被覆蓋於半導體中最具代表性的元素-矽晶面上。研究交換偏移作用在半導體上的第一步驟是製作反鐵磁性的超薄氧化鈷膜。在此文獻中,有三種方法被用在製作反鐵磁性的超薄氧化鈷膜。它們分別是「在常溫下以氧壓下鍍鈷的方式製作超薄反鐵磁氧化鈷膜於11 ML 鈷/矽(111)上」、「在常溫下曝氧於鈷/矽(111)上」和「在常溫下以氧壓下鍍鈷的方式製作超薄反鐵磁氧化鈷膜於已曝氧4000 L達飽和的11 ML 鈷/矽(111)上」。 在第一個方法中,不論是縱向和垂直方向的磁光柯爾效應,其阻隔溫度和交換偏向場都不遵守有限尺寸效應。這實驗結果顯示超薄反鐵磁性的氧化鈷膜或超薄鐵磁性的鈷膜中,可能有某種形式的奈米結構。 在第二個方法中,我們得到一個指數上升的方程式,藉由這個方程式我們可以預測鈷矽化合物(CoSi2)的混合層數。在5在15的鈷原子層中,從AES強度氧鈷比飽和的強度變化換轉成氧的吸附層數,我們可以用一個指數上升的方程式曲線來近似這些數據。這個方程式可寫成IO = (IO)0 {exp[(tCo-t0)/D]-1},其中(IO)0 = 0.41是氧的吸附比;t0 = 2.16 ML是鈷矽化合物(CoSi2)的混合層數;D = 6.98 ML是氧的平均擴散深度。 在最後的方法中,介於鐵磁層鈷與反鐵層氧化鈷介面的氧中,形成氧阻隔層,它會降低鐵磁層鈷與反鐵層氧化鈷的交換作用。另一方面此氧阻隔層也降低反鐵層氧化鈷的形成效率。 吾人提出三項重要的建議,它們分別是「零場冷卻過程」、「交換偏移磁性相圖」和「研究超薄反鐵磁層氧化鈷的表面形貌」。未來這三項建議若被實驗執行時,這可使我們交換偏移作用在半導體上的初步研究提升為交換偏移作用在半導體上的研究基石。Item 氧與氧化鈷在鈷/矽(111)超薄膜上之磁性研究(2008) 張惟祐; Michael摘要 本實驗在超高真空的環境中,使用蒸鍍的方式將Co膜成長在Si (111)-7×7表面上,通入高純度之O2來研究曝氧效應對於Co/Si(111)超薄膜之影響,以歐傑電子能譜儀分析其表面成份,以低能量電子繞射儀以及反射式高能量電子繞射儀觀察其表面週期性結構,以表面磁光柯爾效應儀量測其磁性質。 在純Si (111)基板以及CoSi2介面上,O2會有弱物理吸附而不形成化合態;在鍍上Co膜後,O2吸附之效應較強,且吸附效果隨著Co膜厚成正相關。而O2的吸附作用將改變Co/Si(111)超薄膜之表面磁性層的電子組態改變,故MS、MR與其磁滯曲線角型比皆呈現下降之趨勢。此外由於O2的吸附之效應,一方面降低了有效磁性Co的層數,因而降低了HC;另一方面形成了釘紮區域(pinning sites)阻礙磁化的反轉,因而提高HC,而本系統所觀測到HC之變化為此兩種效應互相競爭的結果。 另一方面,以氧壓下鍍Co的方式製作超薄反鐵磁CoO膜於11 ML Co/Si (111)上,其易磁化軸由原本的水平膜面轉變至傾斜出膜面。且經過場冷卻至150 K可發現水平膜面與垂直膜面兩方向皆有交換偏壓的現象產生。於 CoO膜厚為20 ML時,此系統有最大水平膜面交換偏向場為258 Oe,且其阻隔溫度為200 K;而於CoO膜厚為15 ML時,此系統有最大垂直膜面交換偏向場為924 Oe,且其阻隔溫度為164 K。Item 超薄氧化鈷膜在銥(111)表面上的製備與物性探討(2008) 李佳憲本論文內容將探討Co/CoO/Ir(111)超薄膜的薄膜成長與組成、表面磁性以及薄膜表面結構變化,並利用歐傑電子能譜儀、深度組成分析、表面磁光柯爾效應、低能量電子繞射等方法進行上述的研究。從薄膜成長與深度組成分析得知,在一定層數下的CoO會形成良好的化合狀態;將薄膜進行熱退火步驟後,O與Co的歐傑電子訊號比值會下降。CoO/Ir(111)超薄膜表面鍍上Co後,形成Co/CoO介面,零場冷卻後利用表面磁光柯爾效應儀測量磁滯曲線,發現隨著溫度的降低,矯頑力有增加的趨勢,但磁滯曲線呈現對稱的情況;在場冷卻下的表面磁性分析中,發現除了矯頑力增加,並且有交換偏移現象發生;從薄膜表面結構的觀察中,顯示出其結構週期性變強。經由系列化研究超薄膜系統在不同膜厚下的行為,可以得到鐵磁層與反鐵磁層間交換耦合的最佳條件。Item CoO/Co超薄雙層結構在半導體基底上之磁性研究(2007) 張新政本研究是在超高真空環境下使用蒸鍍方式成長Co、氧壓下鍍Co方式成長CoO,成長CoO/Co超薄雙層結構於Ge(100)與Si(111)上。以歐傑電子能譜儀與反射式高能量電子繞射儀進行表面組成分析,並以表面磁光柯爾效應儀進行室溫與以1 kOe外場冷卻下之磁性性質分析。在Co/Ge(100)上,要出現交換偏向效應需要10 ML的CoO層,而隨著CoO層厚度由10 ML增加到40 ML,阻隔溫度會由169 K增加到231 K。隨著CoO層厚度增加,CoO/Co/Ge(100)會出現環狀繞射圖形,代表更規則化。水平膜面方向的最大交換偏向場出現在25 ML CoO/ 25 ML Co/Ge(100)系統中,HE = 460 Oe,這比在CoO/Co/Ge(111)上所觀測到的小,且出現最大交換偏向場的厚度也較厚。CoO/Co/Si(111)也是有傾斜出膜面的異向性,且介面也會有化合,由於CoO層為多晶,導致交換偏向場會較小。Co/Ge(100)與Co/Si(111)都是磁化易軸接近水平膜面的方向,因此垂直膜面方向的矯頑磁力會叫水平膜面方向的大,導致在量測交換偏向效應時,垂直膜面方向因矯頑磁力超過本系統量測場(2 kOe)而無法的到可信的垂直膜面方向之交換偏向場。