物理學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56

本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。

近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。

本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。

News

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    鎳在銀/矽(111)-(√3 × √3 )表面上聚集分布和熱力衍化的研究
    (2011) 張國偉
    蒸鍍鎳原子於銀/矽(111)-(√3×√3)表面上,變化其鍍量和溫度,並藉由STM觀測鎳原子的聚集分布和熱力衍化。固定溫度於室溫改變鍍量,鎳原子會形成鎳原子團,若鍍量大於0.2 ML,部分鎳原子團會合併形成鎳島,且鎳原子團與鎳島均隨鍍量上升而逐漸變大。 固定鍍量改變溫度,含鎳原子團在300℃以下會逐漸向銀島邊緣聚集,且於300℃逐漸形成外型為幾何形的Ni2Si-δ(2×1)島,並於200~300℃有往塊材擴散的行為,由銀島交界處鑽入裡層,使得表面鎳鍍量下降,於400℃銀原子開始退吸附,使原先被銀覆蓋住的鎳矽化合物變成NiSi2再度露出表面。 升溫至600、700℃時,銀原子已經完全退吸附,而鎳原子仍在矽(111)表面上,其表面形貌主要為,矽(111)-(7×7)、原子團、鎳矽1×1-RC和NiSi2(B)(鍍量超過1.4 ML才會出現),並藉由STS得知,鎳矽1×1-RC的電性頗為類似N型半導體,而NiSi2(B)類似於金屬電性。
  • Item
    抑制矽化物生成的低溫鐵薄膜之成長與磁性研究
    (2011) 涂文廷; Wen-Tin Tu
    相較於室溫成長,低溫下成長於矽基板上的鐵薄膜成功的減少了矽和鐵介面間的矽化物產生。在鐵矽介面間,5到15層低溫成長的鐵薄膜,在350K下都能夠維持穩定的狀態。同時,低溫成長的鐵薄膜其表面相當的平整,粗糙度約在0.4到0.6個奈米間。因此,低溫的鐵薄膜被用來做為一介面層,接續在室溫下繼續蒸鍍鐵薄膜。我們利用磁異相能的單一磁矩模型,來模擬矯頑場的變化,並推論和討論表面及體積異相能。
  • Item
    製作反鐵磁性的氧化鈷在鈷/矽(111)超薄膜上之交換偏移作用研究
    (2009) 莊家翔; Chiashain Chuang
    交換偏移作用在半導體上的想法已經被初步的完成。為了完成這個想法,鐵磁性的元素-鈷,被覆蓋於半導體中最具代表性的元素-矽晶面上。研究交換偏移作用在半導體上的第一步驟是製作反鐵磁性的超薄氧化鈷膜。在此文獻中,有三種方法被用在製作反鐵磁性的超薄氧化鈷膜。它們分別是「在常溫下以氧壓下鍍鈷的方式製作超薄反鐵磁氧化鈷膜於11 ML 鈷/矽(111)上」、「在常溫下曝氧於鈷/矽(111)上」和「在常溫下以氧壓下鍍鈷的方式製作超薄反鐵磁氧化鈷膜於已曝氧4000 L達飽和的11 ML 鈷/矽(111)上」。 在第一個方法中,不論是縱向和垂直方向的磁光柯爾效應,其阻隔溫度和交換偏向場都不遵守有限尺寸效應。這實驗結果顯示超薄反鐵磁性的氧化鈷膜或超薄鐵磁性的鈷膜中,可能有某種形式的奈米結構。 在第二個方法中,我們得到一個指數上升的方程式,藉由這個方程式我們可以預測鈷矽化合物(CoSi2)的混合層數。在5在15的鈷原子層中,從AES強度氧鈷比飽和的強度變化換轉成氧的吸附層數,我們可以用一個指數上升的方程式曲線來近似這些數據。這個方程式可寫成IO = (IO)0 {exp[(tCo-t0)/D]-1},其中(IO)0 = 0.41是氧的吸附比;t0 = 2.16 ML是鈷矽化合物(CoSi2)的混合層數;D = 6.98 ML是氧的平均擴散深度。 在最後的方法中,介於鐵磁層鈷與反鐵層氧化鈷介面的氧中,形成氧阻隔層,它會降低鐵磁層鈷與反鐵層氧化鈷的交換作用。另一方面此氧阻隔層也降低反鐵層氧化鈷的形成效率。 吾人提出三項重要的建議,它們分別是「零場冷卻過程」、「交換偏移磁性相圖」和「研究超薄反鐵磁層氧化鈷的表面形貌」。未來這三項建議若被實驗執行時,這可使我們交換偏移作用在半導體上的初步研究提升為交換偏移作用在半導體上的研究基石。
  • Item
    鈷原子團在 根號三乘根號三-銀/矽(111)面上聚集分布的研究
    (2004) 高執貴
    本文是將鈷蒸鍍在 根號三乘根號三-銀/矽(111)面上,我們利用掃描穿隧顯微儀(STM)來研究鈷在銀所產生的根號三島上聚集與分布趨勢,在不同鍍量與不同溫度下,都出現了特別的現象。 我們分別改蒸鍍了0.9、1.35、1.8、2.25 ML的鈷,發現鈷有往邊緣堆積與鏈狀排列的趨勢,原因是根號三島上有某些區域的電子密度與空域密度特別高而造成鈷聚集。 接著改變不同的溫度,將蒸鍍1.8 ML的樣品加熱處理室溫~ 400 ℃,再降回室溫掃描。經加熱處理100 ℃後,鈷原子團邊緣堆積減少,而且整個根號三島上原子團也明顯變少,推測是鈷與銀相互交換造成。再加熱處理200 ~ 400℃,鈷原子團移動漸漸趨於平衡。 我們在升溫的過程中也發現了一些比較特殊的結構,例如根號三島上有一些突起的島,計算其高度,約是鈷一個單層的高度,研判是鈷鑽入所造成的隆起。我們也發現一些規則排列的三角結構,計算其原子間距,研判不是單純鈷、銀或矽的堆積,由於鈷銀不會有化學反應,也不是鈷銀化合物的堆積,推論應該是鈷矽化合物所產生的堆積。