物理學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56

本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。

近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。

本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。

News

Browse

Search Results

Now showing 1 - 7 of 7
  • Item
    鐵/面心正方錳/鈷在基板銅(100)上,結合磁交換偏耦合和遠程層間磁耦合的磁性與結構研究
    (2011) 王志雄; Chih-Hsiung Wang
    本實驗內容是將Fe/fct-Mn/Co 三層結構以熱蒸鍍的方法將其鍍在銅單Cu(100)上研究此系統的磁交換偏耦合(exchange bias coupling)和遠程層間磁耦合(long range interlayer coupling)現象。 在結構方面,面心正方的鈷(fct-Co)與面心正方的錳(fct-Mn)是利用Low Energy Electron Diffraction (LEED)和I-V LEED 確定其晶格結構。在測量磁性方面,我們利用Magnetic Optical Kerr Effect (MOKE)測得一系列以不同的鐵與錳的厚度的磁滯曲線。 當fct-Mn 厚度增加至24 個原子層,Fe 和Co 的磁矩會經歷過非同調的旋轉(incoherent rotation),造成two-step 的磁滯曲線產生。遠程層間磁耦合(long range interlayer coupling)的影響是傾向鐵和鈷的同調的旋轉(coherent rotation)。但是,Mn/Co 的磁交換偏耦合(exchange bias coupling)會增加鈷的矯頑磁力,同時也破壞到鈷跟鐵的磁矩的同調旋轉機制。結果我們發現當鐵的磁矩正在翻轉時,鈷一開始也跟隨著鐵翻轉,但是到了鐵完成180。翻轉後,鈷又會再次反轉回原始方向。 最後,我們使用磁異向能理論模型(single domain model)以模擬當磁交換偏耦合(exchange bias coupling) 和遠程層間磁耦合(long range interlayer coupling)兩者互相競爭下,所產生的上述磁翻轉機制。
  • Item
    鈷在銀/鍺(111)-c(2×8)及鈷在銀/鍺(111)-(√3×√3)及(4×4)表面的結構衍化
    (2012) 徐仲俞; Hsu,Chung-Yu
    我們利用歐傑電子能譜(Auger electron spectroscopy,AES)、低能量電子繞射(low-energy electron diffraction )來深入探討銀在鍺(111)-c(2×8)及鈷在銀/鍺(111)-(√3×√3)R30°及(4×4)隨著不同退火溫度下表面的結構衍化。 室溫下,銀原子在鍺(111)的成長模式為層狀成長之後再以三維島狀的Stranstri-Krastanov (SK) mode。室溫蒸鍍不同鍍量的銀在鍺(111)-c(2×8)上並退火到420 K至930 K之間,隨著溫度上升至570 K,超過1 ML的銀原子會退吸附直到剩下1 ML的銀,最後在退火溫度為930 K時,銀原子會完全退吸附。在退火過程中,隨著不同的退火溫度及銀鍍量,銀/鍺(111)的結構,由原本的c(2×8)分別會形成(1×1)、(3×1)、(4×4)或(√3×√3)R30°的結構。 室溫蒸鍍鈷在銀/鍺(111)-(√3×√3) R30°及(4×4)上並退火到420 K至930 K之間,鈷在銀/鍺(111)-(√3×√3)R30°及(4×4)的結構上,在退火溫度570 K時,鈷會形成(√13×√13)及(2×2)的重構,而在退火溫度為650 K和730 K時,鈷都是形成(2×2)的重構,在退火溫度為830 K時,鈷原子會退吸附,此結果顯示鈷與基底不會形成合金。
  • Item
    鐵薄膜與鉑基底間溫度相依的介面擴散行為
    (2009) 蔡蕙雅; Hui-Ya Tsai
    我們利用歐傑電子能譜術配合離子濺射,觀察隨離子濺射打掉表面原子系統表面的組成變化,分析1ML Fe/Pt(111)系統經升溫熱退火後鐵原子的擴散情形,並搭配理論估算鐵在合金各層的分布比例。 觀察570K,700K,910K熱退火後的鐵原子擴散,經由歐傑縱深分析後發現鐵原子大部份分布在表面前兩層至第三層,其中700K與910K鐵原子與白金在表層混合均勻,同時配合理論估算得知700K熱退火後,鐵原子在第一層佔73%,在第二層佔23%;910K熱退火後鐵原子在第一層佔 70%,第二層佔21%,比例差異不大。 1017K下的鐵原子則已經鑽入內層與白金均勻混合成類似塊材合金的結構。以理論估算得知鐵原子在每一層比例佔11%至15%,表示鐵原子往內層擴散並與白金混合均勻。
  • Item
    鐵超薄膜在白金(111)面上的成長
    (2007) 許宏彰
    我們利用歐傑電子能譜(Auger Electron Spectroscopy, AES)、低能電子繞射(Low Energy Electron Diffraction, LEED)、以及紫外光電子能譜術(Ultraviolet Photoelectron Spectroscopy, UPS)來深入探討鐵超薄膜鍍於Pt(111) 的成長模式以及在高溫形成合金時的成份、結構變化。 室溫下,鐵薄膜鍍於Pt(111)的成長模式為三層平整成長之後再以三維島狀的S. K. mode。由AES、LEED均能得到相同的結論。而隨著厚度的增加也可以發現在表面有Domain Rotation的行為。因此在LEED Pattern出現了新的衛星亮點。 1,2 與 5 ML Fe/Pt(111)升溫過程各自在520、570與620 K開始在界面擴散;而在670、670與720 K時,開始有合金的行為;而對於2與5 ML的系統,在820與870 K時Domain Rotation的行為隨著溫度的昇高而消失。對於1 ML 深溫至1060 K時,由於表面的重構使得表面鉑原子間距加大,LEED Patternt出現新的(1x1)繞射亮點。
  • Item
    矽單層在銀薄膜上的表面形貌與能譜分析
    (2016) 蘇泰龍; SU, Tai-Lung
    在文獻中得知可以在單晶金屬表面上成長矽單層結構,在本實驗中Si(111)-(7×7)表面上成長6 ML的Ag(111)薄膜取代單晶銀塊材,然後在成長矽單層結構在銀薄膜上。首先將矽基板經過Flash與熱退火的步驟製成Si(111)-(7×7),然後降至100 K後鍍上6 ML的銀,溫度回到室溫在加熱退火至570 K,等樣品緩慢降至室溫就完成銀薄膜的製備,接著成長矽單層。   要成長矽單層,基底需要維持在500 K以上,在本實驗選擇將銀薄膜維持在550 K,鍍上1 ML的矽,就完成矽單層的製作。在此溫度製備完成的矽單層,可以用STM觀察到四種矽單層結構,分別是4×4、 、兩種 結構,除了結構上再加上STS結果,比較後發現並無差異。   因為基底並非銀塊材,所以用LEED觀察後發現Ag(1×1)會發生錯位,用STM觀察也得到相同的結果,並發現銀薄膜的錯位對矽單層的STS結果並無影響。   但當銀薄膜的厚度不同,會表現不同的特性,在6 ML的銀薄膜上鍍矽可發現矽單層,但在1 ML的銀薄膜上鍍矽卻沒有矽單層,推測鍍上去的矽與銀發生翻轉而往下埋入成為矽基板的一部分,所以6 ML的銀薄膜確實可用來代替銀塊材。
  • Item
    鈷原子團在 根號三乘根號三-銀/矽(111)面上聚集分布的研究
    (2004) 高執貴
    本文是將鈷蒸鍍在 根號三乘根號三-銀/矽(111)面上,我們利用掃描穿隧顯微儀(STM)來研究鈷在銀所產生的根號三島上聚集與分布趨勢,在不同鍍量與不同溫度下,都出現了特別的現象。 我們分別改蒸鍍了0.9、1.35、1.8、2.25 ML的鈷,發現鈷有往邊緣堆積與鏈狀排列的趨勢,原因是根號三島上有某些區域的電子密度與空域密度特別高而造成鈷聚集。 接著改變不同的溫度,將蒸鍍1.8 ML的樣品加熱處理室溫~ 400 ℃,再降回室溫掃描。經加熱處理100 ℃後,鈷原子團邊緣堆積減少,而且整個根號三島上原子團也明顯變少,推測是鈷與銀相互交換造成。再加熱處理200 ~ 400℃,鈷原子團移動漸漸趨於平衡。 我們在升溫的過程中也發現了一些比較特殊的結構,例如根號三島上有一些突起的島,計算其高度,約是鈷一個單層的高度,研判是鈷鑽入所造成的隆起。我們也發現一些規則排列的三角結構,計算其原子間距,研判不是單純鈷、銀或矽的堆積,由於鈷銀不會有化學反應,也不是鈷銀化合物的堆積,推論應該是鈷矽化合物所產生的堆積。
  • Item
    以鈀誘發在Mo(111)表面上非晶鉬的皺化(112)面的大小與其厚度之關係
    (2002) 蔡嘉琪
    摘要 本研究的主要工作是利用低能電子繞射儀(LEED)與掃描式穿隧顯微鏡(STM)等常用之表面科學方法,來研究鈀(Pd)誘發在Mo(111)表面上非晶鉬的{112}皺化面的大小與其厚度的關係。已知鈀(Pd)覆蓋在鉬(Mo)或鎢(W)的bcc(111)表面上時,升溫會使表面能皺化形成各面方向{112}的金字塔狀。在Mo的(111)面上覆蓋大於1ML的鈀原子,經由約800K的加熱退火後,由STM觀察,發現金字塔的分佈大小不均勻。因此,本實驗利用在Mo基底上於90K的低溫下覆蓋不同厚度的Mo,Mo覆蓋層在90K的低溫下為非結晶狀物質,利用不同厚度的非晶鉬其晶粒邊界(grain boundary)的效應,來控制金字塔形成的大小與均勻度。首先,由LEED觀察皺化面的繞射圖形有無變化;接著,作皺化面之繞射點的亮度分析,求其半寬波高(half-width)來估計金字塔形成的最大寬度;最後,由STM觀察實際空間的分佈情況,並且驗證LEED亮度分析的準確度。