物理學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56
本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。
近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。
本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。
News
Browse
10 results
Search Results
Item Properties of alkaline earth metal intercalated in FeySe1-xTex system by ammonothermal method(2013) 楊名正摘要 近年鐵基超導體:鐵硒、鐵硒碲和鉀鐵硒相繼被發現超導特性,經比較其超導相變溫度和晶格結構分析後,普遍認為鐵硒層狀結構的距離和其超導相變溫度成正相關關係。「氨熱法」是一種將金屬溶解於液態氨當中,讓金屬原子嵌入鐵硒的層狀結構之間的方法。實驗結果經氨熱法反應後的樣本晶格長度明顯增長,甚至超過原本預期的長度,且超導相變溫度也確實大幅增加。這是因為在氨熱法的過程中,除了原本預期的金屬原子外,連氨分子也一起嵌入了結構之內。 在本篇文章裡,由於鐵硒碲是在做氨熱法須預備的重要材料,我們首先探討鐵硒碲的超導特性品質與其成分的關係,從中我們學到了一些關於鐵硒碲的合成特性以及與超導品質的關係。 鍶嵌入鐵硒層的實驗非常成功,我們找到了其超導特性並探討了相關的磁性和結構。 在鹼金嵌入鐵硒碲層方面的實驗就沒那麼順利,我們發現了一些奇特的磁性現象,文章中將介紹我們觀察到的現象,包含磁性和結構部份。Item 超薄鐵銥合金的成分比例與結構研究(2011) 李亞倫; Ya-Lun Li本論文主要研究鐵超薄膜在銥(111)基底上的成長模式、表面結構、化學偏移及合金成分比例。樣品製備與實驗均在超高真空環境下進行,並透過低能量電子繞射與歐傑電子能譜進行實驗觀測。在室溫300 K鐵超薄膜的成長方面,我們首先以歐傑電子能譜觀察一系列不同厚度之鐵薄膜,發現鐵薄膜在銥單晶上的化學偏移與塊材電負度所預期的結果有相反的趨勢。當鐵薄膜厚度超過2 ML時,其L1M1M2歐傑電子動能隨厚度增加而下降,銥N1N2N7歐傑電子動能隨厚度增加而上升,介面效應仍然明顯;厚度超過4 ML時,鐵L1M1M2歐傑電子動能變化趨於平緩,介面效應減弱,此時樣品的化學狀態以塊材鐵為主。從室溫300 K鐵超薄膜成長之低能量電子繞射實驗結果發現,當鐵薄膜厚度超過5.8 ML時,鐵原子主要是以bcc(110)在fcc(111)上的Kurdjumov-Sachs (KS)模式進行磊晶;當厚度小於1.8 ML時,鐵原子則以基底fcc(111)的方式進行磊晶。鐵超薄膜樣品加熱退火至800 K時,我們從歐傑電子能譜的強度分析可以得到穩定的鐵銥成分比例為1:3;化學偏移的分析發現銥N1N2N7歐傑電子動能比起乾淨銥單晶有下降的趨勢,因此排除鐵原子退吸附的可能;在低能量電子繞射實驗結果中,電子入射動能120 eV時可以發現清楚的(2×2)亮點。由以上三個實驗結果我們推測鐵銥形成規則合金FeIr3,最後透過氬離子濺射實驗進行深度分析,發現實驗所得之濺射效率與FeIr3模型的計算結果相差3%,顯示鐵銥確實形成規則合金FeIr3。另一方面,在低能量電子繞射實驗結果中,電子入射動能75 eV時,可以發現鐵銥合金表面上存在有鐵的兩種結構:bcc(110) KS與bcc(111) (3/2×3/2)R20°。當鐵超薄膜樣品厚度大於5.8 ML時,此兩種結構會同時存在於加熱退火後的FeIr3合金表面;當厚度小於1.8 ML時,合金表面將只剩下bcc(111)結構。Item 抑制矽化物生成的低溫鐵薄膜之成長與磁性研究(2011) 涂文廷; Wen-Tin Tu相較於室溫成長,低溫下成長於矽基板上的鐵薄膜成功的減少了矽和鐵介面間的矽化物產生。在鐵矽介面間,5到15層低溫成長的鐵薄膜,在350K下都能夠維持穩定的狀態。同時,低溫成長的鐵薄膜其表面相當的平整,粗糙度約在0.4到0.6個奈米間。因此,低溫的鐵薄膜被用來做為一介面層,接續在室溫下繼續蒸鍍鐵薄膜。我們利用磁異相能的單一磁矩模型,來模擬矯頑場的變化,並推論和討論表面及體積異相能。Item 鈷及鐵薄膜於鎢(111)表面上的結構與磁性(2011) 林奕成; Yi-Cheng Lin在本篇報告中我們於100K的溫度將鈷或鐵蒸鍍在鎢(111)的表面並升溫至室溫後,藉著低能量電子繞射以及磁光柯爾效應探討其結構與磁性,此外我們將呈現樣品熱處理過程中所觀察到的特殊磁現象。Item 覆鐵或鎳薄膜在鉑針的皺化研究(2010) 洪萱臻; Syuan-Jhen Hong利用場離子顯微鏡(FIM)觀測蒸鍍鐵或鎳原子在鉑針上,加熱退火後的皺化行為。鐵鉑合金加熱退火至800~900K,有兩種金字塔稜線產生。一種為擴張的{100}、{110}及{111}切面在{351}切面的位置形成,另一種則是由{110}、{111}及{311}切面擴張,原子堆積在{231}切面形成金字塔稜線。而鎳鉑合金加熱退火至500~600K,由{110}、{111}及{311}切面擴張,在{231}的位置長成金字塔,可由FIM觀察其稜線。Item 鐵薄膜與鉑基底間溫度相依的介面擴散行為(2009) 蔡蕙雅; Hui-Ya Tsai我們利用歐傑電子能譜術配合離子濺射,觀察隨離子濺射打掉表面原子系統表面的組成變化,分析1ML Fe/Pt(111)系統經升溫熱退火後鐵原子的擴散情形,並搭配理論估算鐵在合金各層的分布比例。 觀察570K,700K,910K熱退火後的鐵原子擴散,經由歐傑縱深分析後發現鐵原子大部份分布在表面前兩層至第三層,其中700K與910K鐵原子與白金在表層混合均勻,同時配合理論估算得知700K熱退火後,鐵原子在第一層佔73%,在第二層佔23%;910K熱退火後鐵原子在第一層佔 70%,第二層佔21%,比例差異不大。 1017K下的鐵原子則已經鑽入內層與白金均勻混合成類似塊材合金的結構。以理論估算得知鐵原子在每一層比例佔11%至15%,表示鐵原子往內層擴散並與白金混合均勻。Item Co/Fe/Pt(111)的磁性研究(2007) 何淙潤我們利用表面磁光柯爾效應儀(SMOKE)探測鐵超薄膜在純白金以及鈷超薄膜在鐵與白金所形成的磁性基底上磁性隨著薄膜厚度的變化。 Fe在Pt(111)上的成長,其磁性和薄膜厚度的關係受外加磁場的大小影響而有所不同,利用小磁場可以測得磁化易軸位於in plane方向,隨層數增加到3 ML也是。1 ML Fe/Pt(111)經退火效應後在室溫測量磁滯訊號,發現只有在Longitudinal方向有值,當退火溫度到600 K~650 K時,有SRT發生,800 K時磁滯曲線消失。低溫成長的1 ML Fe/Pt(111)樣品,有垂直異向性(PMA)現象發生,磁化易軸在out of plane方向上。 dCo/1 ML Fe/Pt(111)樣品的磁性探測,隨Co原子的層數增加,其L-MOKE在柯爾訊號和矯頑磁場都會有增強的現象,當蓋上1 ML Co時,有增強P-MOKE的柯爾訊號,隨Co原子層數增加到2 ML以上,P-MOKE消失。分別在1~3 ML Fe/Pt(111)樣品上鍍上1 ML Co原子,發現都有P-MOKE及L-MOKE柯爾訊號增強的情況。 1 ML Co/1 ML Fe/Pt(111)樣品退火處理後,在溫度為400 K上以,原本存在的P-MOKE柯爾訊號消失;溫度在400 K~500 K之間,磁滯曲線沒有明顯的變動,當溫度到達650 K以上,垂直異向性增強,而磁化易軸轉成out of plane,產生SRT現象。 經由以上鐵,鈷薄膜在不同基底的磁性探討,和實驗室之前的研究統整,希望將來能夠把鐵磁性物質在白金上的磁性與結構變化做個完整的探究。Item 銀覆蓋層對鐵超薄膜在鉑(111)上的磁性影響(2007) 郭明憲; Ming-Hsien Kuo我們以自製的磁光柯爾效應儀(MOKE)探測Ag超薄膜覆蓋於Fe/Pt(111)樣品前後之表面磁性變化,並藉由歐傑電子能譜術(AES) 鑑別樣品表面組成成分、計算薄膜厚度,以及低能量繞射電子儀 (LEED)研究表面結構,利用升降溫系統與離子濺射進行退火效應與深度分析的實驗。 經由在1~3ML Fe/Pt(111)上逐漸覆蓋不同厚度的銀,發現Polar方向的磁性有增強,而Longitudinal方向有減弱的現象,且在Ag覆蓋達1ML之後就無太大變化。藉由離子濺射的過程,觀察磁性及歐傑訊號強度的變化,確認磁性改變的原因來自於Ag-Fe界面效應的作用。 將1ML Ag/1ML Fe/Pt(111)經由不同溫度的退火處理之後,在室溫量測其磁性與歐傑訊號,發現在低於600 K的退火溫度時,由於Fe原子與Pt原子的交換減弱了Ag-Fe介面引致PMA的作用,使得Polar方向的磁性慢慢消失。在退火溫度介於600 K~700 K之間時,由於Fe跟Pt開始形成合金,使得Polar與Longitudinal方向的柯爾訊號及Hc大幅的增加。當退火溫度超過700 K時,由於Fe原子往下擴散到更底層去而Pt原子往上浮出,以及Ag原子逐漸的退吸附,使得Ag-Fe介面的效應變得更弱,導致Polar方向及Longitudinal方向的磁性逐漸消失。Item 鐵超薄膜在白金(111)面上的成長(2007) 許宏彰我們利用歐傑電子能譜(Auger Electron Spectroscopy, AES)、低能電子繞射(Low Energy Electron Diffraction, LEED)、以及紫外光電子能譜術(Ultraviolet Photoelectron Spectroscopy, UPS)來深入探討鐵超薄膜鍍於Pt(111) 的成長模式以及在高溫形成合金時的成份、結構變化。 室溫下,鐵薄膜鍍於Pt(111)的成長模式為三層平整成長之後再以三維島狀的S. K. mode。由AES、LEED均能得到相同的結論。而隨著厚度的增加也可以發現在表面有Domain Rotation的行為。因此在LEED Pattern出現了新的衛星亮點。 1,2 與 5 ML Fe/Pt(111)升溫過程各自在520、570與620 K開始在界面擴散;而在670、670與720 K時,開始有合金的行為;而對於2與5 ML的系統,在820與870 K時Domain Rotation的行為隨著溫度的昇高而消失。對於1 ML 深溫至1060 K時,由於表面的重構使得表面鉑原子間距加大,LEED Patternt出現新的(1x1)繞射亮點。Item 鐵在鍺(111)-c(2×8)及銀/鍺(111)-(√3×√3) 表面上隨溫度衍化的行為(2012) 周明寬在室溫下蒸鍍少量鐵原子於鍺(111)-c(2×8)上,並進行一連串加熱退火的實驗,以穿隧掃描顯微鏡對其形貌進行觀測。從STM的影像圖和對表面上原子島的體積分析,顯示隨著加熱退火溫度的提升,鐵會在鍺基底上造成缺陷與破洞,藉以拉出鍺進行合金使體積增加,並形成數種不同形貌的島嶼。最終當加熱退火溫度達到840K以上後,表面上的原子團會聚集成數種巨大的原子島。 再來將銀蒸鍍至鍺(111)-c(2×8)表面上,將其加熱退火使樣品表面重構為銀/鍺(111)-(√3×√3)後,蒸鍍少量鐵再度進行加熱退火的實驗。與鐵鍺系統的實驗結果比較後發現,銀能夠保護基底上不會出現缺陷,但仍無法阻止鐵在加熱退火溫度升高後從基底拉出鍺進行合金。於鐵銀鍺系統中發現的原子島種類和鐵鍺系統中大致相同,但鐵銀鍺系統中出現新種類的島和一些跡象顯示銀對於鐵鍺合金的成長仍有影響力。