物理學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56

本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。

近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。

本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。

News

Browse

Search Results

Now showing 1 - 10 of 12
  • Item
    掃描穿隧顯微術探究鐵誘導三溴化鉻表面形貌及電子特性的影響
    (2023) 張元儒; Chang, Yuan-Ju
    三溴化鉻(CrBr3)是著名的磁性材料,雖然磁性特性已被研究許久,但相關的表面形態與電子特性尚未完備,是近期研究的新方向。因鉻原子帶有磁性,即使三溴化鉻限縮成二維尺度仍具有穩定的鐵磁性。但是此材料的居禮溫度遠低於室溫,侷限了材料在電子元件上的發展。若能在不破壞材料磁性的條件下增高居禮溫度將必廣泛應用於各領域,這表示摻雜金屬元素形成的異質結構有望改善此限制。因此本研究利用機械剝離法與乾式轉移法製備CrBr3/HOPG異質結構,並利用掃描穿隧顯微鏡(STM)技術探究鐵誘導的三溴化鉻表面形貌以及利用掃描穿隧能譜(STS)研究電性變化。研究結果顯示三溴化鉻的形貌可區分成三種:片狀、層狀與團狀,包括單層到10層的厚度。而我們發現鍍鐵後的平臺表面出現許多2~3 nm寬的不規則紋路,且原子結構變得相當清晰,掃描穿隧顯微鏡能探測到上層與底層的溴原子以及中間層的鉻原子所形成的六邊形。在電性方面,鍍鐵造成相當大的差異,三溴化鉻的能帶間隙從1.837±0.058 eV降至0.148±0.024 eV,代表鐵原子促使屬於半導體的三溴化鉻轉變成半金屬;同時,鍍鐵前後的費米能階(EF)皆偏向價帶,具有P型半導體的性質。根據實驗結果,我們的研究支持密度泛函理論對於三溴化鉻電子特性的預測,為三溴化鉻在自旋電子學領域的研究開啟新頁。
  • Item
    通過掃描穿隧顯微鏡研究二硫化鉬缺陷的形成與其對電子特性的影響
    (2021) 温柏淯; Wen, Po-Yu
    二硫化鉬屬於層狀半導體中的過渡金屬二硫族化物,可透過層數改變其能隙大小,且層跟層之間屬於凡得瓦力作用,我們可以輕易地透過機械剝離來產生新的可研究的表面,一直以來都是電子元件的熱門材料。本次實驗我們在超高真空的環境下,利用掃描穿隧顯微鏡觀察天然二硫化鉬塊材的表面型態以及電性在四種情況下的變化,分別是機械剝離前的原始表面、機械剝離後的新鮮表面、機械剝離後曝氧8小時的表面以及機械剝離後置於大氣下7個月的表面。我們將二硫化鉬進行機械剝離後可以觀察到大量電子空乏的現象,此現象經過曝氧以及置於大氣下後幾乎退去。我們再來探討二硫化鉬的表面電性,曝氧後的二硫化鉬與置於大氣下的表面電性除了導帶的移動具有相似度以外,其表面態的特徵也吻合,藉此可以了解大氣中的氧氣是影響二硫化鉬表面電性的重要因素之一。透過本次實驗,我們了解表面缺陷以及環境的變化可以影響二硫化鉬的表面能帶結構,這將成為我們如何考量天然二硫化鉬作為半導體材料的重要調控條件之一。
  • Item
    穿隧掃描顯微鏡與場離子顯微鏡研究 納米結構的自組裝機制與控制方法
    (2014) 林榮君; Rung-Jiun Lin
    自組裝是透過物件自身的交互作用力組合成元件的機制,並且自組裝結構是一種最低能量也最穩定的結果。當機械或電子設備的漸漸小型化而使得製造也將越來越費工耗時,因此物件的自組裝是一種經濟而有效的方式。 在這篇論文中,介紹了三個關於自組裝的研究。第一部分是以穿隧掃描顯微鏡(STM)研究Co-TPP分子自組裝在不同鍍量(1 ~ 1.3 ML)的矽(111)表面。我們發現透過調整鉛的鋪附量可以改變分子的自組裝結構:第一種自組裝結構是分子會以三種不同的結構(鞍型,平面型的和異平面型)表現形成各自的結構域在 √7 × √3的Pb/Si (111)基底結構上。這結構中我們還可以發現平面型和異平面型的Co-TPP分子形貌會隨溫度相變。第二種自組裝結構是鞍型與平面型的Co-TPP分子會形成交錯排列成有週期性且更為緊密的結構在「線條狀不相稱相(SIC)」的Pb/Si(111)基底結構上。這樣的轉換機制來自於Co-TPP的鈷原子和Pb/Si(111)襯底的相互作用。 表面的皺化與失蹤原子列的產生,都是為了得到最低的表面自由能而去改變表面的形貌。所以第二部分是研究鉬單原子針的自組裝。我們利用場離子顯微鏡觀察純鉬針與鈀,鉑,銠,銥鋪附鉬針經退火後的皺化結果。金字塔形單原子針已於形成鈀,鉑,銠鉬覆鉬針。會有兩種類型的金字塔結構形成,分別為1、3、10或1、6、15的結構。然而,純鉬和銥附鉬針因為表面能異向性差異不足以及銥容易退吸附及與鉬合金而無法形成單原子針。 最後我們同樣利用場離子顯微鏡研究鉑1 × 2的失蹤原子列重構在鉑(110)和鉑(331)的表面。對於鉑(110)面, 經退火到450K發現從1 × 1過渡到1 × 2結構是以跳躍或下行的原子運動產生。對於鉑(331)而言類似的轉變發生在加熱至600K,特別的是形成上兩層都為1 × 2結構的鋸齒模型。我們提出一種新的結構模型解釋鉑(331) - (1×2)重構。 關鍵字:掃描穿隧顯微鏡,場離子顯微鏡,自組裝行為,四苯基鈷卟啉,單原子針,失蹤原子列。
  • Item
    次單層銀夾層對鎳在鍺(111)-c(2×8)表面上隨溫度變化的影響
    (2013) 蔡孟宏; Tsai, Meng-Hung
    當表面形成三種複雜重構介面時,鍍上少量的鎳原子,以掃描穿隧顯微鏡觀察原子團在不同溫度下的成長變化。隨著溫度上升,表面上隨意分佈的鎳原子團逐漸聚集形成大島。這些大島具有特殊結構:7×7島、六角形和長條狀,其中只有7×7島是具有週期性結構的島。經過統計,分析鎳原子團喜愛站在銀/鍺(111)-(√3×√3)的基底上。 在實驗過程中,在低溫時銀不會讓鎳與基底鍺發生反應,充分發揮阻擋的效果, 但提高樣品溫度後出現與鎳鍺系統相同原子島,顯示銀無法完全阻止鎳與鍺形成合金。另外,能夠使在純基底上的鎳原子無法與鍺發生反應,顯示銀具有一種長距離作用力。 比較鈷銀鍺系統和鎳。這兩種皆會發生面積小的島消失,大面積的島逐漸增加,此現象稱Ostwald ripening。在鈷銀鍺的系統裡,比較介面對於鈷的束縛,(4 ×4)介面比(√3×√3)介面強,而且成核的鈷島會推開(4×4)基底上的銀原子,在其他區域形成更大片的(√3×√3)重構;在鎳銀鍺系統裡,原子團的體積會隨著溫度上升而增大,顯示鎳在各種基底上皆會與鍺形成合金,且鎳島會喜愛站在(√3×√3)重構。
  • Item
    鎳在鍺(111)-c(2x8)及銀/鍺(111)-(√3x√3)表面上的成長
    (2012) 李振豪; Jhen-Hao Li
    在室溫下蒸鍍少量鎳原子於鍺(111)-c(2x8)重構之上,並以掃描穿隧顯微鏡觀測其在不同加熱退火溫度下的改變。隨著加熱退火溫度的提升,原先分散於樣品之上的原子團聚集並形成了四種具有不同結構的原子島。當加熱退火溫度再度提升之後,表面上的原子島全數消失,只剩下極少量不規則的原子團,推測消失的原子島已鑽入基底之下。 在鍺(111)-c(2x8)重構之上蒸鍍銀並加熱退火使樣品表面轉變為銀/鍺(111)-(√3x√3)重構後,於室溫蒸鍍少量鎳原子並以掃描穿隧顯微鏡觀測其表面結構在不同加熱退火溫度下的改變並與鎳鍺系統的實驗結果比較,STM圖像顯示銀能夠保護基底不受鎳原子的破壞,然而在加熱退火溫度提升的過程中,原子島的總體積亦隨之上升,顯示銀並無法完全阻止鎳原子與基底形成合金。而在樣品表面上發現的三種不同結構的原子島中,其中一種未曾於鎳鍺系統中發現,代表銀在此系統中起了很大的作用。
  • Item
    鈷島在銀/鍺(111)上的成長行為與電子結構
    (2010) 趙智豪; Chi-Hao Chou
      藉由STM觀察高溫(400℃)下蒸鍍鈷原子在銀/鍺(111)- (4×4)與(√3×√3)介面上的成長行為。隨著鈷鍍量增加,(4×4)露出的面積較(√3×√3)迅速減少,除了(4×4)介面對鈷的束縛較強外,在(4×4)介面上成核的鈷島可能會推動銀原子,讓銀原子有機會移動到(4×4)與(3×1)形成更多的(√3×√3),並且為了降低整體的表面自由能,小面積的鈷島會與大面積的鈷島合併,此為Ostwald ripening現象。 在銀/鍺(111)- (√3×√3)介面上利用高溫蒸鍍做(400℃)熱處理後,表面上的鈷原子具有足夠的動能找到最安定的位置再進行成核,與室溫蒸鍍後再熱處理比較,此種熱處理方法更可以讓鈷島在表面上形成大面積且具有平台的結構。 藉由STS發現侷域電子態密度(LDOS)在臺階邊緣以及平臺上具有不同的特徵能態。在銀/鍺(111)表面上會形成兩種重構鈷島,一種為√13×√13重構鈷島,另一種為2×2重構鈷島。因為介面效應,√13×√13重構鈷島在(4×4) 與(√3×√3)介面上具有不同的LDOS。當鈷島往上成長且島層數為7~8層時,此時2×2重構鈷島與低層數的2×2重構鈷島的LDOS並不完全相同。
  • Item
    超薄鈷/銅(100)膜的電化學特性研究
    (2008) 李育鴻; Y. H. Li
    本實驗是利用電鍍方式在單晶銅(100)電極上成長鈷薄膜,同時使用循環伏安法(Cyclic Voltammetry)、電化學掃描式電子穿隧顯微鏡(EC-STM)、電化學磁光柯爾效應系統(EC-MOKE)來研究單晶銅(100)上所成長鈷薄膜的表面特性與結構以及磁特性,並且嘗試了加入鉛當做電鍍鈷超薄膜的界面活性劑。 以循環伏安法檢測,單晶銅(100)電極在 1 mM HCl電解液中的電化學過程,我們不會發現典型的電流成對峰值:氯離子的吸附、退吸附峰,而是只會出現氯離子的退吸附峰値,在E = -375 mV (vs Ag/AgCl)。正常而言如果是在電流數量級較小的實驗系統開始產生氫氣以後電流就會一路往下。在-650 mV 電流有急速往下減少,表示有質子的還原2 H+ + 2e- → H2。而在 0 mV 的氧化還原電流分別代表銅的氧化與還原沉積,Cu + 2 Cl- ↔ CuCl2- + e-,再將電解液換成1 mM CoCl2/1 mM HCl 會造成氯離子退吸附峰值移動:E = -325mV (vs Ag/AgCl),並且發現在當我們在陰極掃描到E = -600 mV以後,陽極在E = -500 mV以前才會出現鈷原子的氧化峰値。當加入嘗試鉛當電鍍鈷的界面活性劑時,將 0.01 mM PbCl2加入到含有1 mM CoCl2/1 mM HCl的水溶液,從CV實驗的結果可以看出鉛的鍍量有受到控制,如果當電極銅(100)在陰極方向電位持續減小,還是只有低電位沉積(UPD)的鉛原子氧化峰值出現,鉛離子會在往陰極方向E =-400 mV左右開始還原成鉛原子,在陽極方向E =-300 mV鉛原子開始氧化(vs Ag/AgCl)。 進行STM實驗時用鹽酸修飾電極表面,利用氯離子與銅電極間的化學鍵結將形成一高規則度的c(2×2)-Cl結構,其將降低銅電極的表面能量,氯離子對銅有很強的鍵結力,具有修飾銅(100)電極表面平台及台階的效用。當電位改變往陰極方向循序漸進時,可以觀察到氯離子對銅(100)電極的溶解現象,氯離子與銅電極鍵結後,在銅電極表面上較不穩定的島狀物或缺陷處形成CuCl2-化合物,並將銅原子從電極表面拔除,隨時間的變化,銅原子會在電極表面上較穩定的區域,重新將銅原子填回載體,這也是為何實驗進行前我們會在-100 mV ~-300 mV左右掃CV 實驗10~15分鐘,這樣可以得到穩定良好的銅(100)電極表面。當隨著電位減小時我們可以觀測銅(100)電極表面有一溶解的情形,隨時間變化,由台階邊緣往平台方向逐漸溶解,所以台階會變成平滑棉花的波浪狀,相反地,當我們將電位再調回陽極方向更正的電位時會重回氯離子的形態,且電位愈正台階形狀和表面型態皆會趨於穩定。而台階高度在所有觀察電位皆是0.18-0.2 nm。經由STM的觀察可以發現,鈷原子吸附在單晶銅(100)電極上,並沒有單層鈷原子的沉積(沒有發現UPD),鈷原子在沉積時,會先從銅(100)台階凹陷的地方開始沉積,從STM的圖觀察可以看出表面會變的比鈷還沒沉積前來的平坦,但是不會形成一個均勻連續的薄膜表面。 基本上隨著電鍍時間增加膜厚也有增長的趨勢,但是超過十分鐘後因為溶液中鈷的含量分佈不均勻,靠近電極表面的地方,鈷離子的濃度遠小於溶液中的濃度,會導致擴散(diffusion effect)行為,使得鈷離子由濃度高處往低處移動。因此擴散效應影響了鈷原子吸附至銅(100)電極表面導致鍍鈷的速度會隨著時間的增加而變慢,所以CV上沒有明顯變化。另外在此電位下停頓已有氫氣放出,所以停頓愈久氫氣愈多(樣品拿出後有看到氣泡),這也會影響鈷在銅上的鍍率。配合前面的CV和STM結果,我們可以確信鈷離子會於電位-800 mV開始還原並沉積於單晶銅(100)電極上(Co2++2e-→Co)。 在電位-850 mV的狀況下單晶銅(100)電極表面上所沉積的鈷膜經由EC-MOKE觀察出具有磁性現象。到目前為止我們只知道HC似乎只有在一開始1-2層時會增加快速,之後就算隨著膜厚增加也是維持在64-65 Oe左右,MR則在1-3層會增加較快的趨勢,之後會呈現較緩慢的增加,配合STM圖像並還沒有可看出表面結構的改變,但是因為是三維成長,所以表面的形態有變亂的跡象。以0.005 mM PbCl2加入到1 mM CoCl2/1 mM HCl的水溶液,想要以當鉛為界面活性劑主要電鍍鈷,量測EC-MOKE結果,可以觀察出磁滯曲線的訊號,但是磁滯曲線的方正度並沒有在沒有添加PbCl2情況下量測出的好,因此在0.005 mM PbCl2濃度還是沒有達到鉛為界面活性劑的功效。
  • Item
    鐵在鍺(111)-c(2×8)及銀/鍺(111)-(√3×√3) 表面上隨溫度衍化的行為
    (2012) 周明寬
    在室溫下蒸鍍少量鐵原子於鍺(111)-c(2×8)上,並進行一連串加熱退火的實驗,以穿隧掃描顯微鏡對其形貌進行觀測。從STM的影像圖和對表面上原子島的體積分析,顯示隨著加熱退火溫度的提升,鐵會在鍺基底上造成缺陷與破洞,藉以拉出鍺進行合金使體積增加,並形成數種不同形貌的島嶼。最終當加熱退火溫度達到840K以上後,表面上的原子團會聚集成數種巨大的原子島。 再來將銀蒸鍍至鍺(111)-c(2×8)表面上,將其加熱退火使樣品表面重構為銀/鍺(111)-(√3×√3)後,蒸鍍少量鐵再度進行加熱退火的實驗。與鐵鍺系統的實驗結果比較後發現,銀能夠保護基底上不會出現缺陷,但仍無法阻止鐵在加熱退火溫度升高後從基底拉出鍺進行合金。於鐵銀鍺系統中發現的原子島種類和鐵鍺系統中大致相同,但鐵銀鍺系統中出現新種類的島和一些跡象顯示銀對於鐵鍺合金的成長仍有影響力。
  • Item
    利用掃描穿隧顯微鏡探討在硒化銦上未氧化表面和氧化表面之介面接合處的電子特性
    (2018) 羅子嘉; Luo, Zih-Jia
    硒化銦在其表面氧化後,會與塊材產生PN接面(PN junction)。當光子入射至PN接面時,會產生電子電洞對且會因為空乏區產生的內建電場而分離,促使光伏特效應(photovoltaic effect)產生的功率提升。且硒化銦備受關注的一點是其氧化表面可以透過調控氧化因素來改變光反應(photo responsivity),且有研究表示光反應會隨著氧化程度上升,所以硒化銦很有潛力做為光探測器(photo dectector)。 硒化銦的表面形貌和電性都非常容易受到氧化影響。在氧化後硒化銦表面形貌會變得較粗糙而電性表現上會呈現更N-type的行為且能隙更大。當硒化銦氧化到達一定程度後其表面最終會生成三氧化二銦。就此形成硒化銦和三氧化二銦的異質結構(heterostructure)。根據其他巨觀的量測推測硒化銦和其表面的氧化層間會有載子轉移的現象。 為了證實上面的論述,本研究是由掃描穿隧顯微鏡探討二維層狀半導體材料硒化銦表面經過機械剝離法處理前後所形成之介面接合處(interface junction)所發生的電子特性改變的現象。並進一步從掃描穿隧能譜的曲線分析微觀尺度下呈現出介面接合處有載子轉移現象,此現象為氧化層抓走底下硒化銦塊材的電子,並且氧化層內的電洞會填補到硒化銦裡。
  • Item
    利用掃描穿隧顯微鏡量測鈣鈦礦太陽能電池晶粒的光致電子特性
    (2016) 鄭名志; Cheng, Ming-Chih
    鈣鈦礦太陽能電池(Perovskite solar cell, PSC)除了其製程的快速、便利性外,其備受矚目的便是極高的光電轉換效率。有研究發現鈣鈦礦反應層可藉由摻雜量子晶體來影響光電轉換效率。目前已有團隊利用摻雜量子晶體硫化鉛改良鈣鈦礦太陽能電池的效率。研究成果發現,藉由添加硫化鉛有助於增加晶粒的形貌大小,此外還有效地提升太陽能電池的光電轉換效率。 本研究利用掃描穿隧顯微鏡進行量測太陽能電池的主動反應層甲胺鉛氯碘鹽(CH_3 NH_3 PbI_(3-x) 〖Cl〗_x)添加量子晶體後的電子特性的變化。同時比較摻雜硫化鉛及未摻雜硫化鉛後反應層的變化,並針對加光前後的能態密度在正負偏壓增減的情形進行能帶討論。實驗結果顯示摻雜硫化鉛的鈣鈦礦反應層薄膜晶粒直徑變大,且其在加光過後的費米能階遠離導電帶的能量變化量值較未摻雜硫化鉛的樣品晶粒較大,顯示光致載子在鈣鈦礦反應層薄膜分離效率更好,進而導致其光電轉換效率提升。