物理學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56

本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。

近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。

本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。

News

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    氧化釤鋅氧化亞鈷多層膜結構的螢光及磁光特性
    (2022) 蕭欽鴻; Hsiao, Chin-Hung
    本論文探討脈衝雷射蒸鍍法於c-sapphire基板製備單層氧化亞鈷(CoO)、氧化釤鋅(Zn1-xSmxO, ZSO)與CoO/ZSO多層結構薄膜之結構特性、光學特性與磁光特性。其中釤原子摻雜比例分別為0、1與3%,薄膜的製備條件為在氧氣壓力1×10^(-3) mbar,加熱棒溫度設定為400℃,脈衝雷射波長為266 nm,雷射能量密度為CoO 2.4 J/cm2、ZSO 2.0 J/cm2。利用X光繞射光譜與拉曼散射光譜分析結構特性,觀察到纖鋅礦結構的ZnO(002)與岩鹽結構的CoO(111)的特徵特徵峰,代表各層薄膜為單晶結構。並隨著摻雜比例的上升,晶格常數會變大、晶粒大小會變小。在多層膜結構中會因為熱退火效應與晶格間的不匹配度影響著薄膜的結晶性。拉曼散射光譜中,可以觀察到基板、氧化鋅、氧化鋅缺陷與CoO之特徵譜線。AFM結果顯示所有樣品表面呈現顆粒狀,表面形貌接近原子級的平坦。 光學特性由光致螢光光譜顯示在室溫中所有多層膜結構有氧化鋅之近能隙發光,以及部分樣品有鋅空缺、氧空缺與鋅間隙等缺陷所造成的發光,並無發現釤離子在4f軌域躍遷或CoO之螢光訊號,亦沒有ZnO/CoO/ZnO量子井相關的光學特性。 磁光特性由磁光法拉第磁滯曲線結果顯示所有樣品在室溫下皆為順磁性。薄膜之伐得常數隨著波長增加而減少,多層膜的伐得常數計算值與實驗值趨勢與數值相近。
  • Item
    氧化鈥鋅/氧化亞鈷多層膜結構的螢光及磁光特性
    (2021) 王乃緯; Wang, Nai-Wei
    本論文利用脈衝雷射蒸鍍法製備在c-sapphire上三種不同鍍膜環境的單層ZnO摻雜Ho薄膜及三種不同類型夾雜著CoO層的多層膜,其中Ho摻雜比例分為0、1及3%,並研究其結構特性、光學特性及磁光特性。  結構特性方面,X光繞射和拉曼散射光譜觀察到纖鋅礦結構ZnO和岩鹽結構CoO的特徵峰,代表樣品為多層單晶薄膜。其中多層膜結構中較下層的薄膜會因熱退火效應而晶體結構較佳。拉曼散射光譜則從ZHO薄膜觀察到Ho3+ 4f軌域躍遷譜線。  光學特性方面,在所有樣品中皆有ZnO的近能隙發光,在樣品中發現由氧空缺、鋅空缺、鋅間隙或其複合缺陷造成的缺陷發光,但無CoO或Ho3+的螢光,亦無ZnO/CoO/ZnO量子井的譜線。溫度從300 K變化到20 K,因晶格收縮使發光峰值藍移,且因熱擾動減少使ZnO近能隙發光強度相對於缺陷發光上升。  磁光特性方面,由MOFE及MOKE得知,在室溫下量測所有樣品的磁滯曲線皆為順磁性,且磁矩無達到飽和。法拉第磁光效應較強的波長為400到540 nm。薄膜的等效Verdet常數值隨波長增長而減小。除了ZHO 3%的三層膜結構外,多層膜等效Verdet常數的估計值與測量值相近,而ZHO 3%三層膜測量值較低的原因是其ZHO層的法拉第磁光效應比單層薄膜弱。
  • Item
    鐡錳鐡薄膜成長於銅三金之晶體結構與磁性
    (2009) 邱傑振; Ciou Jie-Jhen
    我們使用中能量電子繞射儀,低能量電子繞射儀,磁光科爾效應來決定Fe/Mn/fcc-like Fe/Cu3Au(001)之成長模式,晶體結構及磁性。與Fe/Mn/Cu3Au(001)來比較,在磁性上有一些有趣的發現。即使多了fcc鐡的緩衝層,在低厚度時錳的晶體結構仍然是fcc.造成在垂直於晶體表面方向矯頑磁力的增強以及磁易軸翻轉的臨界厚度偏移可歸因於fcc鐡的緩衝層具有垂直於晶體表面方向的磁異向性.
  • Item
    利用柯爾磁光效應與磁電阻研究電鍍Co/Cu多層膜
    (2013) 魏佳瑜; Chia-Yu Wei
    以電鍍法製備Co/Cu多層膜,並分成四個部分討論基板、初始電鍍電位、緩衝液硼酸以及電鍍時間對Co/Cu多層膜磁性質的影響。主要藉由原子力顯微鏡(AFM)觀察其表面形貌以及粗糙度,柯爾磁光效應(MOKE)所得到的磁滯曲線判斷在外加磁場下磁矩的翻轉情形,以及利用磁阻(MR)變化率和圖形分析影響磁阻的機制並推測其多層膜內部的組成形式。最後一部分由XRD數據分析電鍍Co/Cu多層膜是否具有結構。 本實驗以定電位模式(銅:-0.4V,鈷:-0.9V),硫酸系電鍍液沉積Co/Cu多層膜。 第一部分:討論基板(ITO/Cu和Si/Cu)以及第一層電鍍層(Co層和Cu層)對磁性質的影響。基板為ITO/Cu的導電層較厚且表面粗糙度比Si/Cu大,使其鍍率較高、MR變化率較低。而第一層電鍍層為Co層的樣品不論層數增加多少,均不影響其磁性質;第一層電鍍層為Cu的樣品隨著層數增加,粗糙度和矯頑場上升,但粗糙度增加至6nm後呈現穩定震盪的趨勢且矯頑場大幅下降,而MR變化主要來自巨磁阻(GMR)效應,隨多層膜層數增加而上升。 第二部分:電鍍液加入硼酸後,樣品表面顆粒明顯變小,對外加磁場的靈敏度增加,飽和磁場與矯頑場大幅下降,MR變化主要由GMRSPM效應貢獻。 第三部分:增加第一層電鍍Cu層的時間,大量消耗電極附近的Cu離子濃度,造成層狀結構不明顯,Cu層不連續,Co偏向以塊材形式生長,矯頑場與MR變化率不隨層數變化。 第四部分:從XRD數據討論電鍍Co單層與Co/Cu多層膜是否具有結構。Co(100)和Cu(100)的訊號峰幾乎重疊造成判斷不易,但可從MOKE量測發現微弱的四重對稱性。若Co層厚度增加,Co傾向排列成hcp的結構。 關鍵字:電鍍、磁阻、磁光效應、多層膜