物理學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56

本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。

近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。

本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。

News

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    氧化鈷在11原子鈷層/矽(111)上交換偏移相圖與鈷在銀(√3×√3)/矽(111)之磁性研究
    (2011) 許志榮
    整個論文架構分為三大主題:即「超高真空系統之搬遷與設置」、「y ML CoO/11 ML Co/Si(111)」和「y ML Co/Ag/Si(111)- √3 × √3」之研究。「超高真空系統之搬遷與設置」包括腔體拆解、組裝與表面物理實驗室的規劃以及採取各個步驟和設計流程的原因。在反鐵磁層與鐵磁層「y ML CoO/11 ML Co/Si(111)」研究當y = 5、10、15時,其交換偏移作用是屬於哪一種類型(HE不為零或者Hc變大),實驗的方法是採用「零場冷卻」與「場冷卻」兩種方式來對照,並期許能將實驗結果彙整成交換偏移相圖。「y ML Co/Ag/Si(111)- √3 × √3」先將Ag與Si(111)形成結構為√3 × √3的表面合金,之後再鍍上不同層數的Co膜,以磁光柯爾效應儀研究一系列磁性行為的變化。在反鐵磁層與鐵磁層系統「y ML CoO/11 ML Co/Si(111)」研究結果,在y ≤ 10時,是屬於Hc變大之交換偏移模型,其原因為低層數CoO以奈米顆粒的方式堆積,使得其磁異向性相較外加場來說是比較小,因此會讓柯爾訊號Hc增大。在y ≥ 15時,是屬於HE不為零之交換偏移模型,其原因為高層數CoO在11 ML Co/Si(111)上形成膜,使得其磁異向性相較外加場來說是比較大,因此會讓柯爾訊號HE不為零,最後,彙整交換偏移相圖,交換偏移相圖中分成三個相位,即HE不為零之交換偏移、Hc變大之交換偏移和沒發生交換偏移。「y ML Co/Ag/Si(111)- √3 × √3」研究結果,雖然在y<4.38時沒量測到縱向柯爾訊號,然而從4.38 ≤ y≤10.21之縱向柯爾訊號做線性推斷其通過原點,表示Ag與Si(111)形成Ag/Si(111)- √3 × √3表面合金之後,能有效消除死層,阻止Co與Si(111)形成矽化物。且在4.38≦y≦10.21時,鍍於表面合金Ag/Si(111)- √3 × √3上的Co膜其易磁化軸為水平方向。在其相轉變研究方面,3.65 ML Co/ Ag/Si(111)- √3 × √3 (Ag的殘存量0.48 ML)推估其居里溫度約在275 K到300 K之間,3.51 ML Co/ Ag/Si(111)- √3 × √3系統(其中Ag的殘存量為0.53 ML)中,3.51 ML Co的厚度仍然太薄,3.51 ML Co/ Ag/Si(111)- √3 × √3的居里溫度可以推估小於150 K。
  • Item
    製作反鐵磁性的氧化鈷在鈷/矽(111)超薄膜上之交換偏移作用研究
    (2009) 莊家翔; Chiashain Chuang
    交換偏移作用在半導體上的想法已經被初步的完成。為了完成這個想法,鐵磁性的元素-鈷,被覆蓋於半導體中最具代表性的元素-矽晶面上。研究交換偏移作用在半導體上的第一步驟是製作反鐵磁性的超薄氧化鈷膜。在此文獻中,有三種方法被用在製作反鐵磁性的超薄氧化鈷膜。它們分別是「在常溫下以氧壓下鍍鈷的方式製作超薄反鐵磁氧化鈷膜於11 ML 鈷/矽(111)上」、「在常溫下曝氧於鈷/矽(111)上」和「在常溫下以氧壓下鍍鈷的方式製作超薄反鐵磁氧化鈷膜於已曝氧4000 L達飽和的11 ML 鈷/矽(111)上」。 在第一個方法中,不論是縱向和垂直方向的磁光柯爾效應,其阻隔溫度和交換偏向場都不遵守有限尺寸效應。這實驗結果顯示超薄反鐵磁性的氧化鈷膜或超薄鐵磁性的鈷膜中,可能有某種形式的奈米結構。 在第二個方法中,我們得到一個指數上升的方程式,藉由這個方程式我們可以預測鈷矽化合物(CoSi2)的混合層數。在5在15的鈷原子層中,從AES強度氧鈷比飽和的強度變化換轉成氧的吸附層數,我們可以用一個指數上升的方程式曲線來近似這些數據。這個方程式可寫成IO = (IO)0 {exp[(tCo-t0)/D]-1},其中(IO)0 = 0.41是氧的吸附比;t0 = 2.16 ML是鈷矽化合物(CoSi2)的混合層數;D = 6.98 ML是氧的平均擴散深度。 在最後的方法中,介於鐵磁層鈷與反鐵層氧化鈷介面的氧中,形成氧阻隔層,它會降低鐵磁層鈷與反鐵層氧化鈷的交換作用。另一方面此氧阻隔層也降低反鐵層氧化鈷的形成效率。 吾人提出三項重要的建議,它們分別是「零場冷卻過程」、「交換偏移磁性相圖」和「研究超薄反鐵磁層氧化鈷的表面形貌」。未來這三項建議若被實驗執行時,這可使我們交換偏移作用在半導體上的初步研究提升為交換偏移作用在半導體上的研究基石。
  • Item
    超薄氧化鈷膜在銥(111)表面上的製備與物性探討
    (2008) 李佳憲
    本論文內容將探討Co/CoO/Ir(111)超薄膜的薄膜成長與組成、表面磁性以及薄膜表面結構變化,並利用歐傑電子能譜儀、深度組成分析、表面磁光柯爾效應、低能量電子繞射等方法進行上述的研究。從薄膜成長與深度組成分析得知,在一定層數下的CoO會形成良好的化合狀態;將薄膜進行熱退火步驟後,O與Co的歐傑電子訊號比值會下降。CoO/Ir(111)超薄膜表面鍍上Co後,形成Co/CoO介面,零場冷卻後利用表面磁光柯爾效應儀測量磁滯曲線,發現隨著溫度的降低,矯頑力有增加的趨勢,但磁滯曲線呈現對稱的情況;在場冷卻下的表面磁性分析中,發現除了矯頑力增加,並且有交換偏移現象發生;從薄膜表面結構的觀察中,顯示出其結構週期性變強。經由系列化研究超薄膜系統在不同膜厚下的行為,可以得到鐵磁層與反鐵磁層間交換耦合的最佳條件。
  • Item
    Co/CoO/Ir(111)超薄膜之磁性研究
    (2007) 陳俊明
    本研究是在超高真空環境下於氧壓下鍍Co的方式將獲得的CoxO1-x蒸鍍在Ir(111)表面上,再於CoxO1-x/Ir(111)系統上鍍Co而形成Co/CoxO1-x超薄膜。以歐傑電子能譜儀與表面磁光柯爾效應儀對此超薄膜進行表面組成及磁性性質之分析,藉此一系列地研究探討不同氧壓下成長的CoxO1-x對Co磁性的影響。在經由歐傑電子能譜儀分析的CoxO1-x成長與深度組成,發現到其CoxO1-x薄膜在Ir(111)的表面上為O、Co、CoO的混合薄膜,而再經由表面磁光柯爾效應儀的測量,我們發縣矯頑力隨著溫度的下降至某一溫度後突然增加,其原因為CoxO1-x與Co介面間的交換耦合現象,使得鐵磁層的磁矩儲存一交換異向能,因此要讓磁矩翻轉需要更大的外加磁場,因此Hc值會突然增加。另外,在越大氧壓下成長的樣品薄膜其Hc值突然增加的溫度越低,這是因為CoxO1-x薄膜中的氧會往上擴散到Co薄膜中,而在氧壓越大時成長的CoxO1-x薄膜會有越多的O原子擴散到Co薄膜中,使得Co薄膜中的有效Co顆粒變小,所以我們必須將溫度降到更低交換偏移的效應才顯示出來。