物理學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56

本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。

近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。

本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。

News

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    鎳/鈷/鉑(111)及鈷/鎳/鉑(111)系統其結構與磁性性質之研究
    (2006) 何慧瑩; Huei-Ying Ho
    本研究論文主要是利用歐傑電子能譜儀(Auger electron spectroscopy; AES),低能量電子繞射儀(low-energy electron diffraction; LEED),紫外光能譜術(ultra-violet photoemission spectroscopy; UPS)、以及磁光柯爾效應儀(magneto-optical Kerr effect; MOKE) 來研究Ni/Co/Pt(111) 及Co/Ni/Pt(111) 鏡像系統其成長模式、合金形成及表面磁性的關係。 根據LEED(0,0)光束強度及AES訊號強度隨蒸鍍時間變化的關係,我們得知在室溫條件下,無論是Ni超薄膜在1 ML Co/Pt(111) 上成長(ML: monolayer),或者是Co超薄膜在1 ML Ni/Pt(111)上成長時,都會先形成2層的層狀成長之後才開始3維的島狀成長。對此二系統而言,其升溫形成合金的過程都可被分成2階段,首先是升溫過程中,Co和Ni會先混合,然後Ni-Co混合層在更高溫時會擴散進入Pt基底,形成Ni-Co-Pt合金。其中,1-3 ML Ni/1 ML Co/Pt(111)系統開始產生Ni與Co混合的溫度皆為420 K,此溫度與Ni覆蓋層的厚度無關;然而對1-3 ML Co/1 ML Ni/Pt(111) 系統而言,產生Ni與Co混合的溫度隨Co覆蓋層的厚度增加而升高。此二系統的Ni-Co混合層開始擴散進入Pt基底形成Ni-Co-Pt合金的溫度,皆隨著覆蓋層的厚度增加而升高。 我們同時也量測在室溫成長時,其磁性隨覆蓋層厚度變化的關係。1層至24層Ni超薄膜在1 ML Co/Pt(111) 成長時,其磁化易軸(the easy axis of the magnetization)會在垂直樣品表面的方向,具有很強的垂直磁異向性(perpendicular magnetic anisotropy; PMA);1至3層Co原子層蒸鍍在1 ML Ni/Pt(111)上,無論是垂直或者是平行樣品表面我們皆量測不到磁滯的訊號,此現象可能與Ni緩衝層阻隔了Co與Pt接觸有關。樣品經過升溫效應所產生的磁性變化其擴散過程一致。經過高溫處理過後的樣品形成了Ni-Co-Pt合金,合金的矯頑力(coercivity)大小可經由升溫時產生的合金濃度變化來控制。 根據比較1 ML Ni/1 ML Co/Pt(111)與1 ML Co/1 ML Ni/Pt(111)的實驗結果,我們發現當退火溫度(annealing temperature)介於750 K 和780 K之間時,表面合金結構會由NixCo1-xPt轉變成NixCo1-xPt3,藉由計算接近居禮溫度(Curie temperature)時的值(critical exponent),我們得知此時表面的磁性結構亦由2維磁性結構的轉變成3維磁性結構,並且,在表面合金結構由NixCo1-xPt轉變成NixCo1-xPt3之時,居禮溫度隨退火溫度升高而下降的現象變得更明顯。此外,在相同退火溫度條件下,1 ML Ni/1 ML Co/Pt(111)系統的居禮溫度一直比1 ML Co/1 ML Ni/Pt(111)系統的居禮溫度高,我們認為這種現象與Ni、Co的成分比有關。我們也經由研究2 ML Ni/1 ML Co/Pt(111)、2 ML Co/1 ML Ni/Pt(111)、12 ML Ni/1 ML Co/Pt(111)、以及24 ML Ni/1 ML Co/Pt(111)等系統來探討Ni、Co的成分比對居禮溫度的影響。 另一組鏡像系統,2 ML Ni/2 ML Co/Pt(111)和2 ML Co/2 ML Ni/Pt(111),經過退火之後,我們意外地發現樣品產生了spin reorientation transition (SRT),這種現象在以1層Co及1層Ni當作緩衝層的系統中,完全沒有被發現過。我們認為Ni、Co的成分比及其分佈的均勻度應是造成此現象的重要因素,在本論文中我們會加以討論。
  • Item
    磁性薄膜之表面形貌與磁性行為
    (2012) 何宗穎
      本論文主要探討磁性膜薄的表面形貌與磁性行為之間的關係。實驗架構總共可分成三部分:(1)高定向熱解石墨基板系統(2)三氧化二鋁(藍寶石基板)系統(3)矽(111)基板系統。   高定向熱解石墨基板系統中,利用氬離子轟擊基板,造成基板表面形成缺陷,藉由掃描穿隧式電子顯微鏡觀察鈷原子在平坦的高定性熱解石墨基板上的表面形貌,鈷原子成核的尺寸較表面缺陷的高定性熱解石墨基板上來的大,換句話說,鈷原子成核分佈在表面缺陷的基板上的密度較高。由歐傑電子能譜儀的分析結果可以間接顯示出基板的表面缺陷會使鈷原子成核分佈的更均勻。在磁性方面,利用平行與垂直方向的磁光科爾效應來觀察兩種不同基板的磁性行為。在平坦的基板,鈷薄膜的易軸為平行磁化方向;特別的是,在表面缺陷的基板,鈷薄膜在水平與垂直方向皆可量測到柯爾訊號。經過測試發現易軸為斜向的磁化方向,在厚度達到60ML時仍可以測得。   三氧化二鋁(0001)系統中,利用斜角鍍磁性薄膜(鐵)的方式,造成單軸的磁異向能產生,藉由掃描穿隧式電子顯微鏡觀察在鍍膜角度為0°時,表層鈀原子成核形狀具有三重對稱性;在鍍膜角度為45°與65°時,鈀表面由數奈米大小的顆粒組成。在磁性方面,鍍膜角度為0°時,各個方向角(∅)所量測到的磁滯曲線都是呈現方形的形狀;在鍍膜角度為45°與65°時,產生單軸的磁異向性,易軸方向:沿著方位角∅=0°;難軸方向:沿著方位角∅=90°。   矽(111)基板系統中,我們再一次做了斜角鍍磁性薄膜的實驗,結果與在藍寶石基板中的結果相符。透過改變不同的合金介面層材料(鐵、鎳、鈀),可以觀察到不同的磁性行為,鐵薄膜在鐵-矽合金介面上的矯頑磁力(Hc=130 Oe)大於在鈀-矽合金介面(Hc=50 Oe)與鐵/矽(111)(Hc=50 Oe)。
  • Item
    硫酸鈉與硼酸溶液對導電玻璃ITO上鍍鈷的影響
    (2012) 陳文賓; Wen-bin Chen
    本研究探討硫酸鈉與硼酸溶液對導電玻璃ITO上鍍鈷的影響。以循環伏安法找出適合的電鍍電壓,並改變不同的電解質輔助液探討對鈷膜表面的影響。我們藉由金相顯微鏡、原子力顯微鏡對鈷膜表面進行觀察,再以固定電鍍電壓的方式,分析得到電流對時間的關係,判定鈷在ITO上為接近瞬時成核的機制,並利用磁光柯爾效應測量鈷膜的磁性。 在實驗的過程中我們發現,電解質輔助液硫酸鈉以及硼酸各有其優缺點,硫酸鈉幫助我們決定所需要電鍍的電壓以及增加還原電流,硼酸輔助液不僅可以抑制產生Co的氫氧化物,它還能讓薄膜均勻成長。我們發現硼酸的濃度明顯影響Co島的結構,並進而改變磁性之量測結果。
  • Item
    銀覆蓋層對鐵超薄膜在鉑(111)上的磁性影響
    (2007) 郭明憲; Ming-Hsien Kuo
    我們以自製的磁光柯爾效應儀(MOKE)探測Ag超薄膜覆蓋於Fe/Pt(111)樣品前後之表面磁性變化,並藉由歐傑電子能譜術(AES) 鑑別樣品表面組成成分、計算薄膜厚度,以及低能量繞射電子儀 (LEED)研究表面結構,利用升降溫系統與離子濺射進行退火效應與深度分析的實驗。 經由在1~3ML Fe/Pt(111)上逐漸覆蓋不同厚度的銀,發現Polar方向的磁性有增強,而Longitudinal方向有減弱的現象,且在Ag覆蓋達1ML之後就無太大變化。藉由離子濺射的過程,觀察磁性及歐傑訊號強度的變化,確認磁性改變的原因來自於Ag-Fe界面效應的作用。 將1ML Ag/1ML Fe/Pt(111)經由不同溫度的退火處理之後,在室溫量測其磁性與歐傑訊號,發現在低於600 K的退火溫度時,由於Fe原子與Pt原子的交換減弱了Ag-Fe介面引致PMA的作用,使得Polar方向的磁性慢慢消失。在退火溫度介於600 K~700 K之間時,由於Fe跟Pt開始形成合金,使得Polar與Longitudinal方向的柯爾訊號及Hc大幅的增加。當退火溫度超過700 K時,由於Fe原子往下擴散到更底層去而Pt原子往上浮出,以及Ag原子逐漸的退吸附,使得Ag-Fe介面的效應變得更弱,導致Polar方向及Longitudinal方向的磁性逐漸消失。