物理學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56

本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。

近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。

本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。

News

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    不同鈷原子層在銀/鍺表面之研究
    (2008) 陳俊榮
    在超高真空的環境下(<10-10 Torr),藉由掃描穿隧顯微鏡(STM)觀察鈷原子島成長的行為。為了阻隔鈷與鍺形成合金,先在鍺的表面鍍上一原子單層的銀,並加熱使其形成(√3×√3)的穩定重構,利用分子束蒸鍍鎗在其表面成長鈷的磁性薄膜。蒸鍍上1.4 ML、2.1ML、2.8 ML、3.5 ML、4.2 ML及4.9 ML的鈷並經加熱退火至400 ℃,即成功地發現鈷原子在表面上形成週期性之二維原子島。當鈷原子鍍量不同時,鈷島的成長模式將有不一樣的行為;且隨著鍍量增加,鈷原子島的成長會由二維成長轉變成三維成長。我們也發現,三十五層以上的鈷原子島重構依舊會維持2x2的結構,顯示出鍺基底對於鈷原子島的作用力很大,也代表T4 site 成長為2x2結構比1x1更利。而比較加熱退火至不同的溫度的情況,在低鍍量時鈷原子島面積的成長與溫度成正比關係;若鈷鍍量超過3.5 ML時,鈷原子面積成長將趨於平緩。對週期為2x2的鈷原子島,其成長是一層伴隨著一層地,發現層與層之間的成長有三種方向。
  • Item
    鋪覆超薄膜於針狀金屬表面之現象研究
    (2013) 陳晏清; Chen Yen Ching
    本實驗藉由場離子顯微鏡,觀察超薄膜鋪覆於針狀金屬表面之現象。其實驗現象可分為兩方向討論,其一為覆鉑於鈷針狀結構,由於切面擴張產生皺化現象。加熱退火至600K,可發現由於鉑之鋪覆,增加表面能異向性、降低皺化所需之加熱退火溫度,使得表面自由能較低的(0001)、(1013)、 (1013)切面擴張,並形成單條稜線,但由於鈷為非耐火性之材料,因此易受加熱退火影響,使得稜線成長不完整,難以觀察到金字塔堆疊。 另一方向為,覆矽於銥及鉑針狀結構,成長單層皺形之蜂巢結構-Silicene。由於場離子顯微鏡可看到同一樣品之各個切面,因此可觀察矽於各個切面成長之穩定結構:覆矽於銥(111)切面可發現,同時蒸鍍及加熱退火,可成長較特殊的結構;於銥(100)切面可觀察到矽原子排列成(3×2)之結構;於(311)、(310)及台階邊緣可成長帶狀、六角結構。 覆矽於鉑(111)切面,可觀察切面上可成長六角結構,與現在備受討論的議題-「Silicene」具有相似結構,因此推測鉑也可能成為成長Silicene之基底。
  • Item
    鎳超薄膜在鉑(111)基板上之表面結構及表面磁光性質研究
    (2003) 蘇炯武; Chiung-Wu Su
    本實驗是利用歐傑電子能譜術、低能量電子繞射儀、紫外光電子能譜術以及利用表面磁光科爾效應來研究鎳金屬超薄膜在鉑金屬(111)表面上的結構及磁光性質。討論的範圍首先著重在鎳超薄膜在鉑(111)表面上的磊晶成長模式、結構相圖和合金形成。我們經由歐傑電子能譜、低能量電子繞射及紫外光電子能譜的測量中發現鎳超薄膜在鉑單晶上是以2個原子層的層狀模式成長,且在磊晶的過程中我們更利用低能量電子繞射發現鎳超薄膜在鉑(111)表面上有一些有趣且特殊的結構:偽(1×1)超結構、(√3×√3)R30º、Ni(1.1×1.1)非同調性磊晶、衛星點結構以及(2×2)超結構。鎳原子發現在高溫時會擴散與鉑形成合金,當我們在進行0.8到3.0個鎳原子層熱處理時,結果發現當鎳的厚度愈高,鎳與鉑開始形成合金的溫度也就愈高。為了提高系統鎳超薄膜的膜厚準確度,我們利用兩種理論模型來計算並決定鎳超薄膜膜厚。此外,當經過高溫回火的鎳/鉑(111)表面經由離子濺射技術後亦發現表面組成大多為鉑原子所佔據,此部分確立了鎳原子與鉑原子形成合金的事實。 第二部分我們在鎳/鉑(111)表面上覆蓋銀原子層來研究鎳鉑合金形成因其所受到之影響並與未加銀原子層來做比較。結果發現,覆蓋銀原子層的鎳薄膜層必須上升到更高溫時才與鉑原子形成合金,而且銀原子層在熱處理的過程中並不擴散進入基底且都位於表面的最上層,更有趣的是我們發現在1 ML Ag/1 ML Ni/Pt(111) (ML:原子層)的樣品中經由高溫處理後形成有趣的(2×2)表面超結構,經由晶格常數計算、以及離子濺射實驗後,我們初步推斷最上層的銀原子以1/4的覆蓋率形成(2×2)超結構之後剩餘的3/4銀原子與最上層的1/4殘餘鎳原子形成Ag(75%)Ni(25%)的合金原子層,剩餘的則為鎳鉑合金層。 第三部分我們利用表面磁光科爾效應來探測鎳超薄膜在鉑(111)表面上的磁光性質。鎳超薄膜在諸多系統中都發現具有dead layer的磁性質,故當我們在磊晶過程中探測鎳薄膜的磁光訊號中發現,將近有7層覆蓋率的鎳原子在室溫裡是沒有磁性的,累積到將近24層的鎳原子測得之最大科爾旋轉角也只有0.02º,並且在熱處理的實驗當中,我們發現膜厚與系統的居禮溫度有很大的關連性,甚至極有可能低於室溫。 此外,當磁性超薄膜鎳/鉑(111)表面間加進鈷原子層後,初步發現鎳原子會有初期升溫的過程中先與鈷原子在鉑表面上混合,高溫時再擴散進入鉑基底的特性。經由深度分析的實驗,雖然證明了鎳鈷原子都會與鉑形成合金,但是我們發現鎳原子卻擴散的比鈷原子更為深層。1 ML Ni/1 ML Co/Pt(111)樣品在垂直磁光效應的測量中,也同樣發現在鎳鈷原子混合時磁光訊號有微量的增加,然而之後主要的磁光訊號大增主因來自於鈷鉑形成合金所致,科爾旋轉角在高溫回火後增加為原先的兩倍之多,當我們對於1 ML Ni/1 ML Co-Pt 合金表面進一步的研究中發現,系統的居禮溫度隨著鎳鉑原子在表面的相對組成而有強烈的變化,而且接近甚至低於室溫,在表面化學組成計算後可以初步推論,若鉑原子含量在表面層愈多、鎳原子愈少的狀況下,系統的居禮溫度就愈低。結果發現,1 ML Ni/1 ML Co-Pt 合金表面樣品在經由830 K高溫回火後所測得之系統居禮溫度為275 K,此時所對應的表面化學組成為Pt(69%)Co(29%)Ni(2%)合金層。 最後,鏡射系統1 ML Co/1 ML Ni/Pt(111)的磁光訊號測量也發現許多有趣且不同於1 ML Ni/1 ML Co/Pt(111)系統的物理現象,在升溫的過程當中發現,特定的溫度範圍對於兩種系統有著截然不同的行為,我們發現在600 K到725 K的磁光訊號變化中對於Ni/Co/Pt薄膜有一極大值,然而對於Co/Ni/Pt薄膜卻發現有一極小值。此外,Co/Ni/Pt薄膜發現具有比Ni/Co/Pt薄膜更大的的矯頑磁場,我們初步認為這些有趣的物理現象來自於表面鎳鈷鉑原子的相對組成,以及許多特定穩定合金結構的形成,所以當我們又利用紫外光電子能譜來觀看這兩種磁性超薄膜系統經過高溫熱處理後時,我們可以確定表面原子態大多來自於鉑原子,換句話說,高含量的表面鉑原子是促成系統具有相當低的居禮溫度的主因。