物理學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56

本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。

近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。

本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。

News

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    二維材料石墨烯與過渡金屬雙硫屬化合物之光譜性質研究
    (2014) 沈稚強; Chih-Chiang Shen
    我們量測摻雜三聚氰胺分子的石墨烯薄膜及單層過渡金屬硫屬化合物(MoS2,MoSxSey)薄膜樣品的兆赫波吸收能譜與橢圓偏光光譜,探究這些樣品的電荷傳輸行為與電子結構。我們使用化學氣相沉積法(CVD)與電化學剝離法(ECE)製作摻雜三聚氰胺分子的石墨烯薄膜樣品,並以化學氣相沉積法製作單層過渡金屬硫屬化合物薄膜樣品。   我們發現摻雜後的石墨烯薄膜樣品,在頻率位置155 cm-1有一個吸收峰,此應與摻雜了三聚氰胺分子後所造成的晶格結構無序性有關。此外,居德電漿頻率(摻雜後的石墨烯薄膜與單層二硫化鉬薄膜分別為21和7 THz) 隨著溫度降低而下降,載子的鬆弛時間(13和26 fs)並不隨著溫度改變有顯著的變化。這些結果顯示摻雜後的石墨烯薄膜與單層二硫化鉬薄膜樣品具有半導體的特性。   此外,以電化學剝離法製作的石墨烯薄膜樣品,其居德電漿頻率大於使用化學氣相沉積法製作的樣品。相反的,以電化學剝離法製作的石墨烯薄膜樣品,其載子的鬆弛時間(10 fs)短於使用化學氣相沉積法製作的樣品(84 fs)。有趣的是,單層MoSxSey薄膜樣品的居德頻率由6.5到8 THz,載子鬆弛時間從19到26 fs。   我們發現以化學氣相沉積法製作的石墨烯薄膜樣品,其吸收能譜在紫外光頻率波段具有一個不對稱的Fano共振吸收。這個吸收峰主要是激子在能帶間的躍遷。相較於未摻雜的樣品,摻雜後的石墨烯薄膜樣品,吸收峰的頻率位置呈現藍移的現象。以電化學剝離法製作的石墨烯薄膜樣品,其吸收能譜的波形較為對稱。我們推測此與使用不同的成長方式,改變了石墨烯薄膜樣品的電荷分佈有關。此外,單層MoSxSey薄膜樣品具有直接能隙(二硫化鉬和二硒化鉬分別為1.95 和 1.62 eV)。二硫化鉬和二硒化鉬的激子束縛能分別為0.28和0.24 eV。
  • Item
    石墨烯中電子電子交互作用之研究
    (2014) 吳治緯
    在本文中,我們利用量子場論計算了Graphene電子間交互作用對current-current correlator造成的一階修正。這個結果可以用來計算Graphene的conductivity 。
  • Item
    化學氣相沉積法合成石墨烯
    (2012) 曾咨耀; Tzu-Yao Tseng
    近年來隨著科技不斷進步,人類生活與科技更是密不可分,半導體與電子元件更是蓬勃發展。於半導體與電子元件逐漸縮小化之製程條件要求下,以往元件縮小技術面臨重大挑戰,此時直接製程微小奈米結構成為另一種趨勢。包括奈米碳管、奈米線與近年熱門新興材料石墨烯。其特有準二維結構與快速電子飄移率更是備受大家矚目。 有別於2010年諾貝爾獎得主在2004年所發表機械撥離法,也就是於高定向熱解離石墨(HOPG)中,運用膠帶反覆黏貼,機率性取出單層石墨烯。然而因取之不易,故無法針對工業上之應用進行量產。故本實驗採用化學氣相沉積法(CVD),利用過渡金屬銅箔當作催化金屬,於銅箔表面沉積石墨烯,並轉移至所需基板上。 根據2009年由美國德州大學R. S. Ruoff所率領之研究團隊在Science期刊發表,利用化學氣相沉積法於過渡金屬「銅」上合成95%以上單層石墨烯,因銅之自我限制機制,故當石墨烯完全覆蓋表面後將不再繼續沉積雙層甚至多層石墨烯。 相較於單層石墨烯快速之電子飄移率,雙層至十幾層有更多於單層石墨烯之自由電子數,更有利於較高導電效率之應用發展。因此我們研究溫度、壓力與氣體流量比例對石墨烯樣品結構與層數改變之影響。利用拉曼光譜分析儀分析品質與結構缺陷。 轉印製程中,我們利用PDMS支撐石墨烯並蝕刻銅箔,轉移至載玻片上。利用原子力顯微鏡與四點探針觀察厚度與其片電阻。