物理學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56

本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。

近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。

本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。

News

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    紅熒烯對鎳/矽(100)系統磁性與結構的影響之研究
    (2021) 李有庠; Li, You-Siang
    新興半導體材料的研究日益增長,近年來以紅熒烯為主軸的研究也相當活躍。鐵磁性材料會受紅熒烯影響而改變晶體結構,而本實驗室近年來研究亦指出鐵磁材料鈷受到紅熒烯介面影響在晶體結構以及磁域翻轉的描述有卓越的研究成果。鎳受到紅熒烯的影響,產生磁性與結構上的變化,成為本論文研究重點。本研究利用磁光柯爾效應儀、原子力顯微鏡、磁光柯爾顯微鏡、X光繞射儀、X光反射儀與X光電子能譜儀,去探討鎳/紅熒烯/矽(100)系統的結構與磁性變化。第一部分在鎳/矽(100)系統中,磁性量測矯頑力隨薄膜厚度增加的變化,矯頑力在鎳厚度28奈米時由50 Oe上升至100 Oe左右,而在鎳厚度約28奈米時透過X光繞射確認鎳薄膜開始出現了Ni(200)及Ni(220)兩個磁化難軸的晶向;第二部分分別在鎳的上方及下方加入一層紅熒烯,並從結構分析上得知鎳的晶體結構會因為紅熒烯的加入使得晶粒的增長更加明顯,並且在鎳與紅熒烯的介面層有化學鍵結的產生。而在第三部分鎳/紅熒烯/矽(100)系統中透過加入少量而不同厚度紅熒烯,觀察上層鎳薄膜的磁性變化,在加入少量紅熒烯之後,矯頑力在鎳厚度28奈米時由50 Oe巨幅上升至150 Oe左右,除了從第二部分即可得知的結構變化外,配合科爾顯微鏡以及原子力顯微鏡的測量得知表面顆粒造成的磁性缺陷也扮演著影響磁性的重要角色。
  • Item
    奈米級紅熒烯/鈷薄膜的物理特性研究
    (2019) 周彥維; Jhou, Yan-Wei
    近期可撓式電子產品日益增加,且有機半導體材料具有由於低成本,且易於低溫製程,所以引起了很多關注,其中紅熒烯是具有高載子移動率的有機半導體。本研究中第一部分為紅熒烯奈米級雙層結構研究。X光反射率實驗與擬合,其中紅熒烯薄膜出現雙層模型特性,同時可定出紅熒烯表層的厚度為2.7±0.2奈米,且表層的散射密度長度數值低於下層塊材。紅熒烯厚度增加時,可以觀察到紅熒烯的表面形貌變化,從小顆粒轉變成大顆粒的奈米域(nano domain)。透過X光繞射實驗中,得知紅熒烯薄膜中具有相位分離的分層現象,代表紅熒烯薄膜中具有非單一晶相的奈米域,其中表層具有兩種次要結構,且下層塊材會有另一主要結構。不同厚度下紅熒烯薄膜彈性模量實驗,也可觀察到紅熒烯薄膜具有雙層模型特性趨勢,而後結合雙層模型彈性模量理論進行擬合時,可得知紅熒烯薄膜中表層與下層塊材間彈性模量等。四點探針電性測量時,紅熒烯薄中的雙層性質可用於表現在它的電阻行為,其中觀察到界面粗糙度對傳導電子的傳輸路徑敏感,該訊息對於有機半導體在可撓式面板中的未來應用是具有相當價值。 第二部分的研究為鈷與紅熒烯在矽(100)上形成複合性薄膜的表面與磁性的研究,實驗中嘗試鈷與紅熒烯的比例為1:0.33、1:0.5、1:1。而複合薄膜成長時會傾向層狀方式成長,上層主要為紅熒烯,下層主要為鈷-紅熒烯。當複合薄膜厚度較厚時,其中足夠量的紅熒烯會形成界面活性劑,降低薄膜與矽(100)基板間界面的交互作用,使薄膜表面會非常平坦,且此時樣品的矯頑力較低,當複合薄膜厚度較薄時,表面會有殘留一些鈷的顆粒,薄膜表面較粗糙,其中粗糙的表面代表薄膜中有許多的缺陷,才會使磁化翻轉時矯頑力較大。在鈷與紅熒烯複合薄膜中,當提升紅熒烯薄膜的量時,讓複合薄膜中的鈷與紅熒烯的界面增加,且增加紅熒烯的界面活性劑作用機會,進而提升複合薄膜的品質。 第三部分的研究為紅熒烯插層在鈷/矽(100)的表面與結構對磁性影響的研究。在鈷/矽(100)中會形成奈米鈷晶粒,在插層紅熒烯薄膜之後,紅熒烯會向上層的鈷擴散,讓鈷偏向形成非特殊晶相的膜,並且矯頑力的降低歸因於磁性材料中的缺陷密度下降。而在矯頑力數值附近的鈷/矽(100)柯爾顯微鏡圖像,觀察到在暗圖像中具有一些隨機分佈的缺陷,通過增加外加磁場,缺陷並不會在不同的磁場下移動,並且作為磁域壁運動的釘扎點,通過對鈷/紅熒烯/矽(100)的缺陷密度和矯頑力分析,進而得知樣品中鈷薄膜的磁域會以一維彎曲模型進行磁化翻轉,且缺陷與磁域壁為較強的交互作用。此研究主要透過磁光柯爾顯微鏡直接觀察到薄膜中的缺陷並定量出薄膜中的缺陷密度,如果此技術更加成熟,可以提供給磁性材料一個快速篩檢缺陷的方式。透過紅熒烯界面活性劑效應,改變薄膜中的缺陷,最後影響到薄膜中的磁特性,如果未來能結合薄膜彈性模量的研究,可以提供在可撓式有機磁性面板的開發。
  • Item
    鈷,鐵與紅熒烯在銥(111)上的表面結構與磁性研究
    (2017) 江培成; Jiang, Pei-Cheng
    無中文摘要
  • Item
    鐵在紅熒烯/矽(100)上磁性與結構之研究
    (2018) 謝祥予; Sie, Siang-Yu
    近年來研究指出,鐵磁性材料能受紅熒烯影響晶體結構,而本實驗室近年來研究亦指出鐵磁材料鈷受到紅熒烯介面影響到磁性表現,鐵磁材料鐵受到紅熒烯的影響,產生磁性與結構上的變化,成為本篇研究重點。本研究利用磁光柯爾效應儀、校內合作原子力顯微鏡與磁光柯爾顯微鏡、校外X光繞射與X光電子能譜儀,去探討射頻磁控濺鍍鐵薄膜在蒸鍍成長紅熒烯的系統於矽(100)之上。第一部分在鐵/矽(100)系統中,磁性量測矯頑力隨鐵薄膜厚度增加的變化,矯頑力從25奈米的60 Oe 巨幅上升至30奈米的120 Oe左右,而在鐵約27奈米設為轉變點,並透過X光繞射確認鐵薄膜40奈米以前為bcc結構排列;而在鐵/紅熒烯/矽(100)系統中透過加入不同厚度紅熒烯,觀察上層鐵薄膜的磁性變化,在紅熒烯厚度約1奈米,鐵的矯頑力上升轉變點的厚度提前,當紅熒烯厚度達4、12奈米,矯頑力上升的厚度提前至8奈米,透過X光繞射觀察在加入紅熒烯後發現,鐵薄膜bcc(110)的結晶性上升,其應力增加導致鐵薄膜磁異向能上升使矯頑力增加,而X光電子能譜發現鐵與紅熒烯之間產生介面效應,導致上層鐵薄膜的結構不同;第三部分觀察磁域翻轉模式在鐵薄膜厚度達15奈米以後為大片狀翻轉,在加入紅熒烯時鐵薄膜較薄時呈現細條狀翻轉,鐵薄膜27奈米以後則呈現大片狀翻轉,結合X光繞射分析晶粒大小與原子力顯微鏡分析顆粒在有無加入紅熒烯的不同導致磁域翻轉的變化。
  • Item
    紅熒烯覆蓋層對鈷超薄膜在√3×√3-Ag/Si(111)上的磁性影響研究
    (2016) 莊舒婷; Zhuang, Shu-Ting
    因為半導體技術的應用及功能日新月異,金屬半導體界面已吸引許多研究者的注意,半導體為導電性介於金屬及絕緣體之間的一種材料,常見者如矽、鍺、砷化鎵等晶體;矽是各種半導體材料中,在商業應用上最具有影響力的材料,本實驗的材料基底也因此選用矽來作為實驗的基板;而有機半導體材料擁有很強的應用潛力,有機半導體是具有半導體性質的有基材料,以太陽能電池製造業為例,有機太陽能電池受到高度的關注。若在這些晶體內加入微量雜質原子,則能夠大幅地改變他們的導電能力,可用在製造二極體及電晶體等元件。 自旋電子學(spintronics)及奈米磁學等相關基礎研究近年來在國際間正如火如荼的進行,近年來隨著科技進步,對電子自旋更加瞭解及掌握,在科技上的應用更對日常生活帶來衝擊,許多新材料例如磁性半導體、半金屬等被廣泛研究。磁性通常無法存在於半導體材料中,但磁性半導體是一種同時具有鐵磁性和半導體特性的材料,其中摻有錳的砷化鎵為研究最多的磁性半導體材料之一,而半金屬是指對於自旋為某一方向的電子表現為導體,但對於自旋為另一方向的電子表現為半導體或絕緣體的材料,例如二氧化鉻、四氧化三鐵等。 另外,鈷被廣泛應用於磁記錄媒體,矽又是半導體產業中最重要材料,矽表面非常容易與其他原子產生反應,在矽基底上的過渡金屬會在交界面處形成金屬矽化物(silicide),金屬矽化物擁有低電阻率、高溫穩定性、電流引起之電子遷移(electromigration)效應不嚴重且可以直接在單晶或多晶矽上形成。在過去的研究中,本研究群對鈷/矽系統的磁特性已經進行了廣泛的研究,而文獻中很少有關於紅熒烯/金屬界面的磁特性研究 ,本實驗群這幾年來著重在有機分子與磁性材料形成複合介面的磁特性,因此本研究著重在有機分子紅熒烯與磁性金屬鈷之間形成的異質界面對磁特性之影響。