物理學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56
本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。
近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。
本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。
News
Browse
6 results
Search Results
Item 高定向性熱解石墨表面缺陷誘發鈷及鐵薄膜斜向磁化行為(2011) 黃雅筠; Ya-Yun Huang本論文利用氬離子濺射高定向性熱解石墨基板,探討基板表面缺陷對鈷薄膜的成長與磁性的影響。利用掃描式穿隧顯微鏡觀察鈷原子在較平坦基板上小區域的表面形貌,鈷原子有向台階邊緣聚集、生成薄膜的傾向,而鈷薄膜的厚度隨著距臺階邊緣的距離減少而增加。歐傑電子能譜儀定量分析的結果,間接顯示出基板的缺陷會使鈷原子在平台上更均勻的成核、形成較均勻分佈的鈷顆粒薄膜。在磁性方面,我們利用垂直以及平行方向的磁光科爾效應來觀察缺陷對其的影響。在較平整的基板表面,鈷薄膜的易軸為平行磁化方向;然而,基板缺陷上生成的鈷薄膜在垂直及平行方向皆可測得柯爾訊號。經測試發現這個易軸為斜向的磁化方向,在厚度達到60 ML時仍可測得。代表基板表面的缺陷不只影響介面附近的成核行為,更影響之後薄膜成長的行為。為了更進一步探討,我們將鍍源換成鐵,觀察基板表面缺陷對鐵薄膜的磁性影響。在較平整的基板表面,鐵薄膜的易軸為平行磁化方向;基板缺陷上生成的鐵薄膜易軸方向呈現斜向磁化行為,其矯頑場有隨著鐵薄膜厚度增加而增加的趨勢。但鐵薄膜厚度為26 ML時,磁化方向會倒下、躺在平行磁化方向。基板表面缺陷除了誘發斜向磁化行為的發生之外,也影響了測得磁滯曲線的初始厚度。其生成的鈷及鐵薄膜所測得具磁性的初始厚度皆較平整的基板表面的薄。Item 鈷島在銀/鍺(111)上的成長行為與電子結構(2010) 趙智豪; Chi-Hao Chou藉由STM觀察高溫(400℃)下蒸鍍鈷原子在銀/鍺(111)- (4×4)與(√3×√3)介面上的成長行為。隨著鈷鍍量增加,(4×4)露出的面積較(√3×√3)迅速減少,除了(4×4)介面對鈷的束縛較強外,在(4×4)介面上成核的鈷島可能會推動銀原子,讓銀原子有機會移動到(4×4)與(3×1)形成更多的(√3×√3),並且為了降低整體的表面自由能,小面積的鈷島會與大面積的鈷島合併,此為Ostwald ripening現象。 在銀/鍺(111)- (√3×√3)介面上利用高溫蒸鍍做(400℃)熱處理後,表面上的鈷原子具有足夠的動能找到最安定的位置再進行成核,與室溫蒸鍍後再熱處理比較,此種熱處理方法更可以讓鈷島在表面上形成大面積且具有平台的結構。 藉由STS發現侷域電子態密度(LDOS)在臺階邊緣以及平臺上具有不同的特徵能態。在銀/鍺(111)表面上會形成兩種重構鈷島,一種為√13×√13重構鈷島,另一種為2×2重構鈷島。因為介面效應,√13×√13重構鈷島在(4×4) 與(√3×√3)介面上具有不同的LDOS。當鈷島往上成長且島層數為7~8層時,此時2×2重構鈷島與低層數的2×2重構鈷島的LDOS並不完全相同。Item 超薄鈷/銅(100)膜的電化學特性研究(2008) 李育鴻; Y. H. Li本實驗是利用電鍍方式在單晶銅(100)電極上成長鈷薄膜,同時使用循環伏安法(Cyclic Voltammetry)、電化學掃描式電子穿隧顯微鏡(EC-STM)、電化學磁光柯爾效應系統(EC-MOKE)來研究單晶銅(100)上所成長鈷薄膜的表面特性與結構以及磁特性,並且嘗試了加入鉛當做電鍍鈷超薄膜的界面活性劑。 以循環伏安法檢測,單晶銅(100)電極在 1 mM HCl電解液中的電化學過程,我們不會發現典型的電流成對峰值:氯離子的吸附、退吸附峰,而是只會出現氯離子的退吸附峰値,在E = -375 mV (vs Ag/AgCl)。正常而言如果是在電流數量級較小的實驗系統開始產生氫氣以後電流就會一路往下。在-650 mV 電流有急速往下減少,表示有質子的還原2 H+ + 2e- → H2。而在 0 mV 的氧化還原電流分別代表銅的氧化與還原沉積,Cu + 2 Cl- ↔ CuCl2- + e-,再將電解液換成1 mM CoCl2/1 mM HCl 會造成氯離子退吸附峰值移動:E = -325mV (vs Ag/AgCl),並且發現在當我們在陰極掃描到E = -600 mV以後,陽極在E = -500 mV以前才會出現鈷原子的氧化峰値。當加入嘗試鉛當電鍍鈷的界面活性劑時,將 0.01 mM PbCl2加入到含有1 mM CoCl2/1 mM HCl的水溶液,從CV實驗的結果可以看出鉛的鍍量有受到控制,如果當電極銅(100)在陰極方向電位持續減小,還是只有低電位沉積(UPD)的鉛原子氧化峰值出現,鉛離子會在往陰極方向E =-400 mV左右開始還原成鉛原子,在陽極方向E =-300 mV鉛原子開始氧化(vs Ag/AgCl)。 進行STM實驗時用鹽酸修飾電極表面,利用氯離子與銅電極間的化學鍵結將形成一高規則度的c(2×2)-Cl結構,其將降低銅電極的表面能量,氯離子對銅有很強的鍵結力,具有修飾銅(100)電極表面平台及台階的效用。當電位改變往陰極方向循序漸進時,可以觀察到氯離子對銅(100)電極的溶解現象,氯離子與銅電極鍵結後,在銅電極表面上較不穩定的島狀物或缺陷處形成CuCl2-化合物,並將銅原子從電極表面拔除,隨時間的變化,銅原子會在電極表面上較穩定的區域,重新將銅原子填回載體,這也是為何實驗進行前我們會在-100 mV ~-300 mV左右掃CV 實驗10~15分鐘,這樣可以得到穩定良好的銅(100)電極表面。當隨著電位減小時我們可以觀測銅(100)電極表面有一溶解的情形,隨時間變化,由台階邊緣往平台方向逐漸溶解,所以台階會變成平滑棉花的波浪狀,相反地,當我們將電位再調回陽極方向更正的電位時會重回氯離子的形態,且電位愈正台階形狀和表面型態皆會趨於穩定。而台階高度在所有觀察電位皆是0.18-0.2 nm。經由STM的觀察可以發現,鈷原子吸附在單晶銅(100)電極上,並沒有單層鈷原子的沉積(沒有發現UPD),鈷原子在沉積時,會先從銅(100)台階凹陷的地方開始沉積,從STM的圖觀察可以看出表面會變的比鈷還沒沉積前來的平坦,但是不會形成一個均勻連續的薄膜表面。 基本上隨著電鍍時間增加膜厚也有增長的趨勢,但是超過十分鐘後因為溶液中鈷的含量分佈不均勻,靠近電極表面的地方,鈷離子的濃度遠小於溶液中的濃度,會導致擴散(diffusion effect)行為,使得鈷離子由濃度高處往低處移動。因此擴散效應影響了鈷原子吸附至銅(100)電極表面導致鍍鈷的速度會隨著時間的增加而變慢,所以CV上沒有明顯變化。另外在此電位下停頓已有氫氣放出,所以停頓愈久氫氣愈多(樣品拿出後有看到氣泡),這也會影響鈷在銅上的鍍率。配合前面的CV和STM結果,我們可以確信鈷離子會於電位-800 mV開始還原並沉積於單晶銅(100)電極上(Co2++2e-→Co)。 在電位-850 mV的狀況下單晶銅(100)電極表面上所沉積的鈷膜經由EC-MOKE觀察出具有磁性現象。到目前為止我們只知道HC似乎只有在一開始1-2層時會增加快速,之後就算隨著膜厚增加也是維持在64-65 Oe左右,MR則在1-3層會增加較快的趨勢,之後會呈現較緩慢的增加,配合STM圖像並還沒有可看出表面結構的改變,但是因為是三維成長,所以表面的形態有變亂的跡象。以0.005 mM PbCl2加入到1 mM CoCl2/1 mM HCl的水溶液,想要以當鉛為界面活性劑主要電鍍鈷,量測EC-MOKE結果,可以觀察出磁滯曲線的訊號,但是磁滯曲線的方正度並沒有在沒有添加PbCl2情況下量測出的好,因此在0.005 mM PbCl2濃度還是沒有達到鉛為界面活性劑的功效。Item 通過掃描式穿隧顯微鏡比較機械剝離法前後二硫化錸的電子特性(2017) 盧奕宏; Lu,Yi-Hung二硫化錸層狀半導體屬於過渡金屬二硫族化物(TMD)的材料。隨著二維材料的發展,這種 層狀半導體在表面上的電性是最近非常熱門的課題。藉由STM/STS的量測,我們更加認識二硫化錸在表面上的行為。 比較機械剝離法(簡稱Fresh)前後的二硫化錸的表面。首先進行Non-Fresh的直接量測,形貌上面本來有許多亮點與暗點,但是經過Fresh表面之後的ReS2亮點卻消失。藉由形貌去推斷ReS2上的亮點形成可能來自於ReS2吸附雜質或是表面突起,ReS2的暗點推測是結構上的缺陷或是表面凹陷。 此外,實驗顯示電性上ReS2是n-type的半導體,而且發現在Fresh過後的電性比Non-Fresh更有更多的電子載子的狀況。對比上述Non-Fresh所擁有的形貌特徵,吸附雜質並不會貢獻出載子消耗的變化,經由曝大氣之後的ReS2造成表面有局部的漣漪凸起會讓載子濃度降低。 將Fresh過後在大氣下曝氣兩個月的樣品再次進行量測,形貌和電子特性大致上還原成Non-Fresh的情況,說明經Fresh二硫化錸表面的特性受大氣的影響而且是會重複且發生。Item 利用掃描穿隧顯微鏡探討在硒化銦上未氧化表面和氧化表面之介面接合處的電子特性(2018) 羅子嘉; Luo, Zih-Jia硒化銦在其表面氧化後,會與塊材產生PN接面(PN junction)。當光子入射至PN接面時,會產生電子電洞對且會因為空乏區產生的內建電場而分離,促使光伏特效應(photovoltaic effect)產生的功率提升。且硒化銦備受關注的一點是其氧化表面可以透過調控氧化因素來改變光反應(photo responsivity),且有研究表示光反應會隨著氧化程度上升,所以硒化銦很有潛力做為光探測器(photo dectector)。 硒化銦的表面形貌和電性都非常容易受到氧化影響。在氧化後硒化銦表面形貌會變得較粗糙而電性表現上會呈現更N-type的行為且能隙更大。當硒化銦氧化到達一定程度後其表面最終會生成三氧化二銦。就此形成硒化銦和三氧化二銦的異質結構(heterostructure)。根據其他巨觀的量測推測硒化銦和其表面的氧化層間會有載子轉移的現象。 為了證實上面的論述,本研究是由掃描穿隧顯微鏡探討二維層狀半導體材料硒化銦表面經過機械剝離法處理前後所形成之介面接合處(interface junction)所發生的電子特性改變的現象。並進一步從掃描穿隧能譜的曲線分析微觀尺度下呈現出介面接合處有載子轉移現象,此現象為氧化層抓走底下硒化銦塊材的電子,並且氧化層內的電洞會填補到硒化銦裡。Item 矽單層在銀薄膜上的表面形貌與能譜分析(2016) 蘇泰龍; SU, Tai-Lung在文獻中得知可以在單晶金屬表面上成長矽單層結構,在本實驗中Si(111)-(7×7)表面上成長6 ML的Ag(111)薄膜取代單晶銀塊材,然後在成長矽單層結構在銀薄膜上。首先將矽基板經過Flash與熱退火的步驟製成Si(111)-(7×7),然後降至100 K後鍍上6 ML的銀,溫度回到室溫在加熱退火至570 K,等樣品緩慢降至室溫就完成銀薄膜的製備,接著成長矽單層。 要成長矽單層,基底需要維持在500 K以上,在本實驗選擇將銀薄膜維持在550 K,鍍上1 ML的矽,就完成矽單層的製作。在此溫度製備完成的矽單層,可以用STM觀察到四種矽單層結構,分別是4×4、 、兩種 結構,除了結構上再加上STS結果,比較後發現並無差異。 因為基底並非銀塊材,所以用LEED觀察後發現Ag(1×1)會發生錯位,用STM觀察也得到相同的結果,並發現銀薄膜的錯位對矽單層的STS結果並無影響。 但當銀薄膜的厚度不同,會表現不同的特性,在6 ML的銀薄膜上鍍矽可發現矽單層,但在1 ML的銀薄膜上鍍矽卻沒有矽單層,推測鍍上去的矽與銀發生翻轉而往下埋入成為矽基板的一部分,所以6 ML的銀薄膜確實可用來代替銀塊材。