物理學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56

本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。

近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。

本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。

News

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    新穎材料 Cs2Nb4O11 與 MexMn1-xS ( Me = Co, Gd ) 之光譜性質研究
    (2010) 黃俊儒; Chun-Ru Huang
    們研究Cs2Nb4O11單晶樣品的光譜性質。Cs2Nb4O11於165 ℃展現反鐵電相轉順電相的相變,第一原理理論計算顯示,氧八面體中心的Nb(4)與Nb(5)的位移為相變主要機制,NbO6八面體沿著c-axis位移而造成氧原子週遭的環境不同,受到其它原子的吸引或排斥,所以高溫橢圓偏振光譜 ( T = 165 ℃) 顯示氧原子2p軌域上的電子躍遷至鈮原子3d軌域所需要的能量( 4.95 eV與6.07 eV )受到了影響。 其次,我們研究MexMn1-xS (Me = Co, Gd)多晶樣品的變溫拉曼散射光譜。隨著摻雜Co離子濃度增加,CoxMn1-xS樣品顯現值得注意的重點包括(i) 840 cm-1拉曼峰有藍移的現象;(ii) 840 cm-1拉曼峰隨著溫度降低有紅移的現象。我們推測840cm-1拉曼峰與小極化子機制有緊密的關連性,經由小極化子的理論分析顯示出其束縛能隨著居里溫度的降低而增加。此外,位於1000 cm-1的拉曼峰在溫度低於尼爾溫度時,其拉曼峰權重會上升。以上這些實驗結果驗證材料為具有複雜自旋-聲子交互作用的系統。
  • Item
    製作反鐵磁性的氧化鈷在鈷/矽(111)超薄膜上之交換偏移作用研究
    (2009) 莊家翔; Chiashain Chuang
    交換偏移作用在半導體上的想法已經被初步的完成。為了完成這個想法,鐵磁性的元素-鈷,被覆蓋於半導體中最具代表性的元素-矽晶面上。研究交換偏移作用在半導體上的第一步驟是製作反鐵磁性的超薄氧化鈷膜。在此文獻中,有三種方法被用在製作反鐵磁性的超薄氧化鈷膜。它們分別是「在常溫下以氧壓下鍍鈷的方式製作超薄反鐵磁氧化鈷膜於11 ML 鈷/矽(111)上」、「在常溫下曝氧於鈷/矽(111)上」和「在常溫下以氧壓下鍍鈷的方式製作超薄反鐵磁氧化鈷膜於已曝氧4000 L達飽和的11 ML 鈷/矽(111)上」。 在第一個方法中,不論是縱向和垂直方向的磁光柯爾效應,其阻隔溫度和交換偏向場都不遵守有限尺寸效應。這實驗結果顯示超薄反鐵磁性的氧化鈷膜或超薄鐵磁性的鈷膜中,可能有某種形式的奈米結構。 在第二個方法中,我們得到一個指數上升的方程式,藉由這個方程式我們可以預測鈷矽化合物(CoSi2)的混合層數。在5在15的鈷原子層中,從AES強度氧鈷比飽和的強度變化換轉成氧的吸附層數,我們可以用一個指數上升的方程式曲線來近似這些數據。這個方程式可寫成IO = (IO)0 {exp[(tCo-t0)/D]-1},其中(IO)0 = 0.41是氧的吸附比;t0 = 2.16 ML是鈷矽化合物(CoSi2)的混合層數;D = 6.98 ML是氧的平均擴散深度。 在最後的方法中,介於鐵磁層鈷與反鐵層氧化鈷介面的氧中,形成氧阻隔層,它會降低鐵磁層鈷與反鐵層氧化鈷的交換作用。另一方面此氧阻隔層也降低反鐵層氧化鈷的形成效率。 吾人提出三項重要的建議,它們分別是「零場冷卻過程」、「交換偏移磁性相圖」和「研究超薄反鐵磁層氧化鈷的表面形貌」。未來這三項建議若被實驗執行時,這可使我們交換偏移作用在半導體上的初步研究提升為交換偏移作用在半導體上的研究基石。