物理學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56

本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。

近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。

本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。

News

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    以掃描穿隧顯微術研究複合有機異質結構之表面形貌與電子組態
    (2024) 黃步偉; Huang, Bu-Wei
    隨著新穎科技與半導體產業的發展迅速,有機半導體材料近年因多元材料特性而受到廣泛關注。紅螢烯(Rubrene)在過去已有許多相關的物理、化學和材料科學等研究;除了以高載子遷移率著稱,用其製作之有機電子元件皆有相當出色的表現,顯現紅螢烯作為有機半導體的潛力。然而,紅螢烯沉積於表面的原子尺度形貌、能譜以及相關研究仍屬缺乏。本研究主要透過自組式熱蒸鍍槍沉積紅螢烯於矽(111)、HOPG基板上形成有機異質結構,再透過掃描穿隧顯微術(STM)和掃描穿隧能譜術(STS)進行量測。紅螢烯分子以Stranski–Krastanov模式首先形成小型島狀結構;再形成填滿表面區域的單、雙分子層高平台;最終形成交互堆疊的島狀結構,顯現出紅螢烯沉積時的複雜性。在鎳金屬沉積於紅螢烯有機異質結構表面後,我們觀察到表面形貌的清晰度顯著提升;若進行表面形貌分析則可觀察到符合紅螢烯分子尺寸的單塔亮點結構,也觀察到與紅螢烯側方苯取代基匹配的雙塔亮點結構,推測紅螢烯分子將以駢四苯骨幹平行於表面的方式吸附,或以不同的分子方向進行沉積。本研究STS量測發現鎳金屬沉積後的有機異質結構能譜更為明顯,能隙(E_g)與紅螢烯單晶的理論能隙相符,但是大於先前文獻以光學方法測得之能隙數據,且傳導帶(E_c)與價電帶(E_v)位置也不同,凸顯出紅螢烯分子能帶結構之複雜特性。總而言之,本研究對於紅螢烯有機異質結構進行一系列量測實驗,並發現與先前文獻有所異同的結果;同時,本研究再次驗證金屬蒸鍍於表面將有助於提升掃描穿隧顯微術與能譜術之解晰度。相信值得以此作為出發點更進一步延伸探討,也將開啟相關研究新的範疇與視野。