機電工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/84

系所沿革

為迎合產業機電整合人才之需求,本校於民國 91年成立機電科技研究所,招收碩士班學生;隨後並於民國93年設立大學部,系所整合為「機電科技學系」,更於101學年度起招收博士班學生。103學年度本系更名為「機電工程學系」,本系所之發展方向與目標,係配合國家政策、產業需求與技術發展趨勢而制定。本系規劃專業領域包含「精密機械」及「光機電整合」 為兩大核心領域, 使學生不但學有專精,並具跨領域的知識,期能強化學生之應變能力,以適應多元變化的明日社會。

教學目標主要希望教導學生機電工程相關之基本原理與實務應用的專業知能,並訓練學生如何運用工具進行設計、執行、實作與驗證各項實驗,以培養解決機電工程上各種問題所需要的獨立思考與創新能力。

基於建立系統性的機電工程整合教學與研究目標,本系學士班及研究所之教育目標如下:

一、學士班

1.培育具備理論與實作能力之機電工程人才。

2.培育符合產業需求或教育專業之機電工程人才。

3.培育具備人文素養、專業倫理及終身學習能力之機電工程人才。

二、研究所

1.培育具備機電工程整合實務能力之專業工程師或研發人才。

2.培育機電工程相關研究創新與產業應用之專業工程師或研發人才。

3.培育具備人文素養、專業倫理及終身學習能力之專業工程師或研發人才。

News

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    金屬/氧化鉿(HfO2)/氧化釩(VO2)/氧化鉿(HfO2)/Si 結構應用於MOSFET之電性研究
    (2022) 薛建宏; HSUEH, Chien-Hung
    隨著現代科技產品朝向輕、薄、功能性多以及多樣化結合的發展,使得電子產品的製造商對於半導體元件的要求變更加嚴格,因此對於電晶體的品質要求也隨之變高。本研究使用了高功率脈衝磁控濺鍍技術(HIPIMS)來製作鋁(Al)/二氧化鉿(HfO2)/二氧化釩(VO2)/二氧化鉿(HfO2)/Si之MIS結構,有別於傳統的直流磁控濺鍍技術,高功率脈衝磁控濺鍍技術能更有效率的製作薄膜。本研究採以不同的VO2薄膜厚度(20 nm、40 nm、60 nm),以及不同的退火溫度(500 ºC、650 ºC、800 ºC)退火60秒,使用半導體分析儀量測電流-電壓 (I - V)和電容-電壓(C - V)特性,並分析不同厚度和退火溫度所造成的影響。最後,會進一步的量測電容-電壓(C - V)電特性量測進行介面陷阱電荷(Dit)的量測,探討不同的參數對於漏電流以及界面陷阱密度(Dit)的影響。我們在各個退火溫度與薄膜厚度的關係中可以發現,當薄膜厚度在20 nm 的時候退火溫度越高,漏電流越大,而當薄膜厚度在40、60 nm時,退火溫度越高,漏電流反而更小,推測是材料內部的結晶重新排列消除了大部分的缺陷,而退火溫度太低還沒到達再結晶溫度,因此漏電流會隨著厚度增加。進行了界面陷阱電荷密度(Dit)量測,我們在各個退火溫度與薄膜厚度的關係中可以發現與電性量測時相同的趨勢,在20 nm的時候退火溫度越高,陷阱越大,而當薄膜厚度在40、60 nm 時,退火溫度越高,陷阱反而更小,而在這之中比較出最好的數值是800 ºC的退火溫度,厚度40 nm的試片,會形成這樣的結果推測是因為厚度在40 nm 時有較好的薄膜反應並且有將缺陷以及應力消除。
  • Item
    HIPIMS鍍製HfO2氧化層之MIM電容的鐵電量測
    (2016) 石登元; Shih, Teng-Yuan
    鐵電材料是目前熱門的研究目標之一,現今科技的發展使得我們對於電子元件的尺寸追求越來越小。然而傳統鐵電材料所鍍製的薄膜厚度大約幾百奈米,薄膜的漏電也非常大,從而影響鐵電材料在記憶體上的應用。所以科學家們開始尋找新型的鐵電材料,並且發現HfO2和ZrO2等材料,有機會取代傳統鐵電材料。其中HfO2更是許多科學家所看好的新型鐵電材料選擇,並嘗試使用不同的鍍製方式來探討HfO2薄膜所能展現出的鐵電特性。 在本研究中,我們將利用高功率脈衝磁控濺鍍 (High Power Impulse Magnetron Sputtering, HIPIMS)來製備HfO2鐵電層。試片的基本結構上為,在P-type矽基板上使用DC sputter鍍製下電極的Mo,再來是鐵電層HfO¬2,最後則是上電極的Al。實驗總共會有三組Sample的變化。Sample 1為在HfO2層中摻雜Zr形成HfO2:Zr薄膜。Sample 2則是在HfO2層上鍍製一層Zr層。Sample 3是在HfO2的上下方分別鍍製TiN層以及ZrN層兩種結構變化。試片完成後,做鐵電性的量測,並配合物性測量作分析。最後,本研究在三組Sample中皆有發現極化現象。在Sample 1中得知HIPIMS鍍製時,氧氣通量在10 sccm表現最佳,並且RTA在850℃時無鐵電性表現。在Sample 2中得知Zr摻雜在HfO2的量不是越多越好,在TEM中看出HIPIMS鍍製時Hf對Mo層造成損害的情況,這情況在Sample 3的結構中能有效的改善。而Sample 3試片的鐵電性在三組中是表現最好的,TiN與ZrN在RTA溫度上的趨勢表現相反,推測是因為兩者在應力結構上表現不同。 關鍵字: 高功率脈衝磁控濺鍍、鐵電材料、二氧化铪
  • Item
    高功率脈衝磁控濺鍍二氧化鋯介電層於金氧半電容之性質研究
    (2015) 賴禹丞; Lai, Yu-Cheng
    高功率脈衝磁控濺鍍 (High Power Impulse Magnetron Sputtering, HIPIMS)是目前最新的濺鍍製膜技術,與傳統的直流磁控濺鍍 (Dielectric Current Magnetron Sputtering, DCMS)相比,HIPIMS有著在極短的脈衝時間內讓靶材單位功率密度達到數 kW/cm2以上的特性,另外還能產生出很高的電漿密度並有效增加靶材金屬離化率,生成的薄膜也有著較好的品質,因為這些特質,本研究將使用 HIPIMS與 DCMS系統分別沉積 MOS電容中的介電層。 二氧化鋯是一具有高介電係數 (約在19-25之間)、寬能隙寬能隙 (5.1-7.8 eV)及高熱穩定度之特性的材料,因此選擇二氧化鋯去做為試片的介電層,最後再鍍上TiN作為金屬層,在 800度的快速熱退火之後,觀察該電容器的物性。接著,對試片電容沉積鋁電極以量測電性,因此本研究的試片結構為Al/ TiN/ ZrO2/ p-Si。實驗結果顯示HIPIMS技術優秀的離子解離率可以使ZrO2的結構更加完整、內部的缺陷也比較少,因此有比較好的電容值表現。物性方面,HIPIMS所濺鍍出的電容一樣會形成更加緻密的薄膜進而提高其機械性質,在硬度值有所增加,有效的改善薄膜硬度。 最後,綜合作比較,可以發現雖然電容值與硬度兩者的改變差異沒有完全的相同,但是在整個趨勢上是相當近似的,因此從量測介電層的硬度就可以推測出電容值的走向,而電容值的改變也可以進一步推斷出IDsat的趨勢,如此就可以於完成製作 MOSFET電晶體前,提前達到製程優化。