機電工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/84

系所沿革

為迎合產業機電整合人才之需求,本校於民國 91年成立機電科技研究所,招收碩士班學生;隨後並於民國93年設立大學部,系所整合為「機電科技學系」,更於101學年度起招收博士班學生。103學年度本系更名為「機電工程學系」,本系所之發展方向與目標,係配合國家政策、產業需求與技術發展趨勢而制定。本系規劃專業領域包含「精密機械」及「光機電整合」 為兩大核心領域, 使學生不但學有專精,並具跨領域的知識,期能強化學生之應變能力,以適應多元變化的明日社會。

教學目標主要希望教導學生機電工程相關之基本原理與實務應用的專業知能,並訓練學生如何運用工具進行設計、執行、實作與驗證各項實驗,以培養解決機電工程上各種問題所需要的獨立思考與創新能力。

基於建立系統性的機電工程整合教學與研究目標,本系學士班及研究所之教育目標如下:

一、學士班

1.培育具備理論與實作能力之機電工程人才。

2.培育符合產業需求或教育專業之機電工程人才。

3.培育具備人文素養、專業倫理及終身學習能力之機電工程人才。

二、研究所

1.培育具備機電工程整合實務能力之專業工程師或研發人才。

2.培育機電工程相關研究創新與產業應用之專業工程師或研發人才。

3.培育具備人文素養、專業倫理及終身學習能力之專業工程師或研發人才。

News

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    高精度管型線性馬達之摩擦分析及補償器設計
    (2011) 郭智瑋; Jr-Wei Guo
    本論文研究之目的為設計並實現新型的高精密定位平台,並且針對摩擦力進行分析與補償器的設計。摩擦力為一種非常複雜的物理現象,會降低運動控制系統的定位精度與追蹤性能。 本論文所設計的實驗平台為單軸的定位平台,行程為210mm,平台整體為52920067mm3。為了減輕定位平台重量,平台機構採用鋁合金,傳動機構採用線性滑軌,致動器則使用管型線性馬達來驅動平台。 在摩擦力補償方面,我們首先建立與分析系統之動態模型,然後利用摩擦力模型或滑動觀測針對滑軌之摩擦力做估測,分別結合PID控制器、適應控制器或適應模糊控制器來對摩擦力進行補償,消除摩擦力對定位平台的影響,由模擬與實驗結果證明此系統為可行的。
  • Item
    以電磁驅動之二維高精度定位平台設計與控制
    (2008) 周昌翰; Chang-Han Jou
    本論文研究之目的是設計並實現一新型、長行程、二自由度運動的微米級定位平台。本研究是基於本精密運動實驗室以前對於電磁驅動器研究之基礎,再結合機構之設計,進行一創新型之微米級微步進定位平台之研製作為本研究之主要課題。我們所設計之新型電磁推力精密定位系統,其構造是由兩個主動式之線圈與一個兩端鑲有永久磁鐵之被動式移動平台所組成,而其驅動原理是利用電磁線圈與永久磁鐵間所產生之相互作用力,藉由調整輸入電磁線圈之電流,而改變運動平台之位置。因此特殊之機構設計使本研究之定位系統運行時,具有兩倍之推力。 首先,我們先設計與實現定位系統受控裝置並且對其建立與分析系統之動態模型,而後則分別建立PID控制器、適應模糊控制器與適應滑動模式控制器並且對滑軌之摩擦力作補償設計。由模擬與實驗結果證明此系統為可行的。 本論文所設計的平台在X與Y二維度之最大行程可達 ,且最高解析度為 ,平台整體尺度為 。平台主體機構採用鋁合金材料,以減輕定位平台之重量,導引裝置採用上銀科技之線性滑軌;致動裝置則X軸與Y軸分別使用兩組電磁驅動致動器來達成定位平台二維之運動。
  • Item
    高精密度雙軸鐵心式永磁同步伺服線性馬達定位平台之控制器設計與性能分析
    (2015) 林玠虢; Lin, Chieh-Kuo
    本研究提出了適應性增量式滑動模式控制(AISMC)應用於雙軸式的鐵心式永磁伺服同步線性馬達,以建立高精密度之雙軸運動控制平台。AISMC之特色為在設計時會考慮過去的控制量輸入以降低滑動模式控制(SMC)的抖振現象,以及利用適應控制來即時估測與補償系統的不確定項,以達到提升系統精確度之目的。 為了建立出高精密度之雙軸運動平台,本研究會先運用磁場導向定理(field-orented control)將驅動馬達之三項控制電流轉換為d-q軸控制電流,並將其與線性馬達之磁推力方程式和機械模型整合後得出雙軸線性馬達平台的動態方程式。然而在馬達運作中會遭遇到許多外在干擾,諸如摩擦力、漣波效應及系統內部參數之變異量等,我們將這些干擾統稱為系統的不確定項並將其納入雙軸線性馬達平台的動態方程式內做考量,以建立出較為精細的動態方程式。依據上述所建立之系統動態方程式便可設計出高階控制器,在控制器設計階段我們會先設計SMC,由於其結構簡單和強健性高因此很適合用於線性馬達這類系統不確定性較多的系統中,但其缺點為在順滑模態時的抖振現象,為改善此現象我們設計了AISMC,其特色為在設計控制器時會考慮過去的控制量輸入,藉此抑制抖振現象,並利用適應控制來補償系統的不確定性,以提升雙軸運動平台之精密度。 在實驗階段我們會先分別對X軸與Y軸做獨立控制,以分析出SMC及依照其缺點來改良之AISMC的效能差異,透過定位控制及追跡控制之實驗結果分析可發現AISMC可有效的抑制抖振現象並且擁有較高的精確度,因此在雙軸同動追圓之實驗中我們便採用AISMC作為主要之控制器。
  • Item
    Adaptive Multivariable Fuzzy Logic controller
    (Elsevier, 1997-02-16) Yeh, Zong-Mu
    This paper presents a systematic methodology to the design of a multivariable fuzzy logic controller (MFLC) for large-scale nonlinear systems. A new general method which is based on a performance index of sliding motion is used to generate a fuzzy control rule base. Reducible input variables obtained from sliding motion are adopted as input variable of the fuzzy controller and the output scale factors of the MFLC are tuned by the switching variable. Thus, the determination of the input/output scale factors becomes easier and the system performance is significantly improved. The simulation results of a Puma 560 system and a two-inverted pendulum system demonstrate that the attractive features of this proposed approach include a smaller residual error and robustness against nonlinear interactions.