機電工程學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/84
系所沿革
為迎合產業機電整合人才之需求,本校於民國 91年成立機電科技研究所,招收碩士班學生;隨後並於民國93年設立大學部,系所整合為「機電科技學系」,更於101學年度起招收博士班學生。103學年度本系更名為「機電工程學系」,本系所之發展方向與目標,係配合國家政策、產業需求與技術發展趨勢而制定。本系規劃專業領域包含「精密機械」及「光機電整合」 為兩大核心領域, 使學生不但學有專精,並具跨領域的知識,期能強化學生之應變能力,以適應多元變化的明日社會。
教學目標主要希望教導學生機電工程相關之基本原理與實務應用的專業知能,並訓練學生如何運用工具進行設計、執行、實作與驗證各項實驗,以培養解決機電工程上各種問題所需要的獨立思考與創新能力。
基於建立系統性的機電工程整合教學與研究目標,本系學士班及研究所之教育目標如下:
一、學士班
1.培育具備理論與實作能力之機電工程人才。
2.培育符合產業需求或教育專業之機電工程人才。
3.培育具備人文素養、專業倫理及終身學習能力之機電工程人才。
二、研究所
1.培育具備機電工程整合實務能力之專業工程師或研發人才。
2.培育機電工程相關研究創新與產業應用之專業工程師或研發人才。
3.培育具備人文素養、專業倫理及終身學習能力之專業工程師或研發人才。
News
Browse
16 results
Search Results
Item 7075鋁合金同質與純鈦異質摩擦攪拌銲接之接合特性與熱處理效應研究(2023) 沈哲宇; Shen, Che-Yu本研究分別選用AA7075-T6、AA7075-O、Gr.2 Ti,三種材料,對AA7075-O進行熱處理、FSW(800 rpm搭配50 mm/min)、銲後熱處理;對AA7075-T6 進行單雙面FSW(600 rpm搭配60 mm/min) 、銲後熱處理;對AA7075-T6與Gr.2 Ti 進行FSW(600 rpm搭配40 mm/min),對其上三種不同組合所達成的銲接條件進行機械性質與微觀組織的分析與探討。在AA7075-T6材的研究顯示,雙面銲接由於多一道銲接過程,更多的熱量提供使其在機械性質表現上較單面銲接降低,但在銲後熱處理後,其拉伸性質則較單面銲接增加,二者在銲道皆面臨AGG異常晶粒生長的狀況,經熱處理後產生脆性斷裂的問題。在AA7075-O材的研究結果顯示,熱處理時時效溫度越高會導致材料特性抵達峰值時間越少,但其峰值表現也會越低。AA7075-O在銲接後,於其銲道有晶粒細化的表現,因此該區域硬度獲得提升,但在愈遠離銲道則愈發降低,直至母材強度。經銲後熱處理後,若要成功獲得優良的機械性質,必須避免銲道裂縫與AGG的產生,經銲後熱處理之試片與母材熱處理後之機械性質趨勢一致,皆能達成約母材熱處理的80%強度,並且在與T6材FSW的銲接性質比較中,更為提升。而其中AA7075-O在進行銲後與固溶淬火後的拉伸試驗中,可以發現有DSA的產生,能為其增加強度。在AA7075-T6與Gr.2 Ti 異質銲接的研究結果顯示,在600 rpm搭配40 mm/min可以達到無缺陷接合,從EPMA的觀察中可以發現,僅0.1 mm的偏置距離已讓鈦和鋁合金在攪拌區形成化合物及鈦碎屑的攪拌,而IMC層由於其硬脆的特性,導致拉伸試驗皆斷裂於該處。Item 純鈦與Ti-6Al-4V合金同質摩擦攪拌銲接之機械性質與抗腐蝕特性研究(2023) 林合康; Lin, Ho-Kang本研究使用摩擦攪拌銲接(FSW)技術對Gr. 2 CP-Ti及Ti-6Al-4V進行同質對接,使用碳化鎢圓球形凸銷攪拌棒作為銲接工具,銲接過程攪拌棒傾斜角分別使用3°及1°,且下壓深度分別為1.9 mm及1.8 mm,探討不同主軸轉速、進給速度對於銲接件機械性質及抗腐蝕能力的影響,利用金相組織觀察、抗拉試驗、微硬度試驗等作為機械性質分析。在抗腐蝕分析中使用3.5 wt %氯化鈉水溶液模擬海水中使用狀態進行各參數銲道及熱影響區抗腐蝕性質比較,另外將摩擦攪拌銲接實驗數據與惰氣鎢極電弧銲(GTAW)進行銲後性質比較。實驗結果在使用圓球形凸銷攪拌棒時,可以增加材料的塑性流動方向,且在成功的銲接參數下,拉伸斷裂位置都出現在母材,在CP-Ti摩擦攪拌銲接的主軸轉速600 rpm、進給速度80 mm/min有最佳銲接性質,抗拉強度為395 MPa,為母材的 94.8 %,而Ti-6Al-4V最佳銲接性質在主軸轉速900 rpm、進給速度40 mm/min時,抗拉強度為1059 MPa,為母材的99.3 %。從純鈦的銲接攪拌區可觀察到明顯的晶粒細化現象,且微硬度直達180 HV,Ti-6Al-4V合金的攪拌區則為針狀的費德曼組織,且攪拌區也有明顯的硬度提升,相較於GTAW,FSW在純鈦接合中有較佳的延伸率,而在Ti-6Al-4V接合中FSW有較優異的機械性質表現。在CP-Ti、Ti-6Al-4V銲後抗腐蝕性研究中,兩種接合法之銲道受組織改變影響,抗腐蝕性均低於母材, FSW的攪拌區及熱影響區相較於GTAW銲道,FSW在抗腐蝕能力中有明顯提升,其中Ti-6Al-4V經FSW在主軸轉速1000 rpm、進給速度40 mm/min 的銲道表面及攪拌區底部未相變態之晶粒細化組織,使抗腐蝕性大幅提升,且優於母材。Item 銅合金與鋁合金異質摩擦攪拌銲接之接合特性研究(2023) 王聖寶; Wang, Sheng-Pao本研究應用摩擦攪拌銲接製程於 CuZn35黃銅同質對接、 CuZn35黃銅與 6061-T6鋁合金,及C1100純銅與 6061-T6鋁合金接合之研究,攪拌工具皆使用鎢鋼材質,探討不同的進給與轉速配合下,對於銲接件接合特性之影響。為了分析異質接合之品質,本研究也針對轉速對溫度變化造成之影響進行監測。黃銅同質摩擦攪拌銲接部分,本研究將攪拌棒設定在中心位置,轉速700 rpm、進給速率50 mm/min的條件下,可成功接合,且銲道無缺陷,在攪拌區因晶粒細化使得硬度提高,銲件之抗拉強度與延伸率達到母材之90%以上%。在黃銅及鋁合金之異質對接中,使用偏移量0至1 mm,並使用0至3度傾斜角進行銲接,實驗結果顯示偏移量設定在偏鋁側1 mm,於轉速設定900 rpm、進給速率設定為 30 mm/min,且在傾斜角為3度的條件下可有效接合,沒有缺陷產生,在攪拌區發現鋁銅化合物產生,使得硬度提高,但銲件接合強度不佳,最高抗拉強度約80 MPa 左右,拉伸破壞位置均位於接合界面。在純銅及鋁合金之異質接合中,使用偏移量1 mm,傾斜角1.5度進行銲接,當轉速設定在1700、1800及1900 rpm、進給速率控制在30 mm/min之條件下可達成銲道無缺陷的接合。轉速在1700及1800 rpm時攪拌區觀察到鋁銅化合物生成,硬度增加,但拉伸性質不佳,當轉速提高到1900 rpm時,鋁銅化合物減少,使得銲件的拉伸性質獲得改善。Item 摩擦攪拌銲接純鈦與6061鋁合金之接合性質與銲後熱處理效應研究(2022) 楊子頡; YANG, TZU-CHIEH本研究將純鈦與6061鋁合金使用摩擦攪拌銲接技術選用偏位與置中兩種接合方法進行異質接合,攪拌棒選用高速鋼,偏位銲接攪拌棒凸銷設計為圓柱形,而置中銲接攪拌棒凸銷設計為半圓球形,傾斜角為2∘,探討不同主軸轉速、進給速度以及攪拌棒形狀對於銲道機械性質之影響,而後對其施以時效與固溶時效處理,比較熱處理前與熱處理後之金相顯微組織、機械性質分析以及元素分布分析。實驗結果顯示在偏位與置中接合,在主軸轉速1000 rpm、進給速度80 mm/min皆可得到最佳的銲道機械性質,兩種接合方法進行拉伸試驗皆斷在熱影響區,偏位接合最大抗拉強度為158 MPa,而置中接合最大抗拉強度為176 MPa,金相顯微組織可觀察到攪拌區因動態再結晶而有晶粒細化的效果,熱影響區有晶粒粗大化的現象,導致銲件在此區硬度下降。根據EPMA與微硬度分析可觀察到,純鈦與鋁合金在銲道中劇烈攪拌,在兩種材料介面形成金屬間化合物(IMC),其硬度值最高到達600 HV,與偏位接合相比,置中接合攪拌區純鈦攪動範圍較大,被攪入的鈦碎屑也較多,IMC層厚度也較厚且較為複雜。經由FSW銲後熱處理使用時效處理及固溶時效處理,鋁合金攪拌區及熱影響區晶粒組織有均質化的效果,固溶時效處理可觀察到粗大的晶粒組織會與周圍的組織相結合,形成緊密的組織結構,在微硬度測試可觀察到,鋁合金經由時效處理攪拌區及熱影響區硬度由未進行熱處理的60 HV提升至80 HV;經由固溶時效則可提升100 HV,接近鋁合金母材的硬度,FSW純鈦與鋁合金對接使用固溶時效處理最大抗拉強度可提升至166 MPa。Item AA7075鋁合金與Ti-6Al-4V合金摩擦攪拌銲接微觀組織與機械性質研究(2021) 鄭元愷; Cheng, Yuan-Kai本研究選用Ti-6Al-4V合金與AA7075合金,以FSW進行AA7075/ AA7075、AA7075/ Ti-6Al-4V 同質與異質的接合。找出合適的銲接參數後,對同質銲件施以T6銲後熱處理,比較T6銲後熱處理對機械性質之影響,並對各組銲接條件進行機械性質、微觀組織與電化學抗腐蝕性探討。在AA7075/ AA7075同質FSW研究結果顯示,以圓錐攪拌銷可以成功接合的條件需以較高熱量輸入,接合後攪拌區因動態再結晶而產生晶粒細化,而熱影響區則有晶粒粗大化現象,導致銲道附近之硬度下降。同質銲件施以T6銲後熱處理後銲道整體硬度均提升到原有母材硬度,銲件最大抗拉強度達到489.8 MPa,為鋁合金母材強度之82%,但延伸率則至7.3%。而AA7075/ Ti-6Al-4V異質FSW研究結果顯示,若以較高熱量輸入之銲接參數進行接合,將因兩合金之熱膨脹程度不一在銲道產生裂縫。根據EPMA觀察結果顯示,在兩種合金界面出現金屬間化合物(IMC),IMC的厚度與形成的形式隨轉速而改變,無論轉速高低皆在界面處量測到鈦元素擴散至鋁合金,擴散範圍與轉速高低成正比。銲接參數為540 rpm – 60 mm/min時有最高抗拉強度248.44 MPa,為鋁合金母材強度之41%。電化學腐蝕試驗結果顯示,AA7075因FSW後銲道產生晶粒細化效果,導致單位面積下有更多連續晶界存在,引起更多晶界的腐蝕行為,因此抗腐蝕性較母材差。Ti-6Al-4V則因FSW攪拌棒肩部接觸之銲道表面晶粒尺寸較母材區域小,有更多鈍化膜成核點的形成,因此其抗腐蝕性優於其母材。Item 製程參數與攪拌棒凸銷形狀對純鈦摩擦攪拌銲接接合特性與抗蝕性影響之研究(2021) 張文瀚; Chang, Wen-Han本研究使用摩擦攪拌銲接技術以對接的方式進行 Gr. 2 商業用純鈦的接 合,攪拌棒使用碳化鎢製成,攪拌棒傾斜角 3°、下壓深度 1.6 mm,探討使 用不同轉速、進給速度、攪拌棒凸銷形狀對於銲道機械性質影響。另外也探 討使用摩擦攪拌銲接與惰氣鎢極電弧銲接銲後試片在 3.5 wt %氯化鈉水溶液 中的抗腐蝕性比較。首先將接合之試片進行表面與斷面觀察、金相組織觀察、 微硬度試驗、拉伸試驗等來分析銲件的機械性質,最後進行電化學腐蝕試驗 來分析試片的抗腐蝕性。實驗結果顯示使用加大錐形凸銷攪拌棒、轉速 400 rpm、進給速度 50 mm/min 時可以得到較佳的銲接性質,抗拉強度可達 310.63 MPa,為母材的 92.25 %。在攪拌棒凸銷的形狀上,使用圓柱形凸銷攪拌棒可以形成較大的 攪拌區,但容易在材料內部產生缺陷;使用圓錐形凸銷攪拌棒則可以擴大成 功銲接的範圍,但因攪拌區較小造成銲接強度不足。除此之外,純鈦經過摩 擦攪拌銲接後在攪拌區內都可以觀察到明顯晶粒細化的效果,也讓該區域的 硬度有所提升,可達到 175 HV 左右。熱影響區的晶粒尺寸則變化不大,但 經過銲接後該區域硬度則有些微降低。在抗腐蝕性方面,經過摩擦攪拌銲接 的試片在攪拌區內由於晶粒細化的作用,其抗腐蝕性都有明顯的提升,該區 域內的抗腐蝕性不僅優於母材,也優於使用惰氣鎢極電弧銲接方法接合之試 片。Item 應用田口法於AZ31鎂合金薄板摩擦攪拌銲接之最佳參數設計(2022) 鄭凱維; Cheng, Kai-Wei本研究使用精密型五軸加工機,配合自行設計得夾具夾持厚度為1 mm之AZ31鎂合金薄板試片,固定於工作平台上進行摩擦攪拌銲接,使用田口法減少實驗次數並找出最適參數組合以得到最佳的抗拉強度,用L9的田口直交表設計加工參數,三種因子與各三種水準分別為攪拌頭肩部尺寸(2、2.5、3 mm)、主軸轉速(14000、15000、16000 rpm)以及進給速度(5、10、15 mm/min)。銲接後再進行銲道的表面觀察、微硬度試驗、金相顯微組織觀察、拉伸試驗及掃描式電子顯微鏡觀測分析,實驗後得到以下幾項結論:1. 銲道的孔洞缺陷直接影響銲道的抗拉強度,從拉伸試驗的斷裂面能看出其斷裂位置並非原本的對接邊,而是銲道造成的孔洞處斷裂,抗拉強度最高的編號5試片其孔洞缺陷最小,抗拉強度最高,能判斷孔洞缺陷對銲道抗拉強度有非常大的負面影響。2. 最高的抗拉強度為編號五試片,其參數為2.5 mm肩部尺寸、15000 rpm、15 mm/min,抗拉強度為169.052 Mpa,約為母材強度的65%,最低的抗拉強度為編號1試片,其參數為2 mm肩部尺寸、14000 rpm及5 mm/min,抗拉強度為30.804 Mpa,為母材強度的11%。3. 編號5號試片出現延性破壞的酒窩狀(dimple)組織,顯示本試片在拉伸過程中產生了塑性變形,其他八組試片發現材料的斷面呈現劈裂面或自由表面,尚未完全塑性變形便破斷,可以得知其他組別試片的破斷面皆為脆性破壞。4. 透過田口法,找出之最適參數為A2(2.5 mm肩部尺寸)、B2(15000 rpm)、C3(15 mm/min)參數組合,其剛好為實驗參數配置的編號五號試片。Item 熱處理與稻殼燃燒灰質微粒添加對AA5052與AA6061鋁合金摩擦攪拌異質接合之效應研究(2020) 吳政德; Wu, Zheng-De本研究使用摩擦攪拌銲接製程應用於AA5052與AA6061鋁合金之異質對接,攪拌工具使用高速鋼材質,攪拌桿與機台主軸之傾斜角設定為2度,探討不同轉速與進給對銲件接合性質之影響。為了改善接合品質,本研究針對銲接件進行銲後熱處理,並於攪拌區加入稻殼燃燒灰質微粒,再針對接合成功之銲接件進行顯微組織與機械性質分析。 實驗結果顯示,在接合攪拌區兩種合金產生混合效果,達到有效接合,並有晶粒細化現象,而在熱影響區則發生晶粒粗大化。硬度量測結果發現銲道整體硬度低於原始母材,且在AA6061熱影響區之硬度最低,約為50 Hv,拉伸試驗之試片均於此處斷裂。當主軸轉速為1600 rpm、進給速度為40 mm/min時,可以獲得較佳之機械性質,抗拉強度為172.7 MPa,最大延伸率為10.3%。為提升銲接件之機械性質,本研究分別於銲後實施160℃持溫12小時之T5熱處理與530℃持溫1.5小時後再進行160℃持溫12小時之T6熱處理,硬度分析結果顯示T5熱處理可以提升AA6061側攪拌區之硬度達100 Hv左右,但對於熱影響區及AA5052側攪拌區之硬度則無明顯提升,銲接件之抗拉強度稍有提升,但延伸率略降,試片斷裂處仍在AA6061側之熱影響區。經T6熱處理後AA6061側攪拌區與熱影響區之硬度均提升至130 Hv左右,示差掃描熱分析(DSC)的結果顯示有析出物形成,拉伸試片的斷裂處則為銲道中央部位。另一方面,於攪拌區混入稻殼燃燒灰質微粒,分別經1~4次的摩擦攪拌製程,經T6熱處理後可以提升攪拌區的硬度,SEM/EBSD分析的結果顯示具有晶粒細化的效果,經混入稻殼燃燒灰質微粒後重複攪拌2~4次的試片,拉伸後於AA5052側斷裂,抗拉強度最高可以提升到211 MPa,延伸率則提升至12.6%左右。Item 純鈦與6061鋁合金摩擦攪拌異質接合之機械性質與抗腐蝕特性研究(2019) 郭承典; Kuo, Chen-Tien本研究使用摩擦攪拌銲接的技術搭配對接及搭接兩種方式用於純鈦與6061鋁合金之異質接合,摩擦攪拌銲接利用高速鋼作為攪拌棒,攪拌棒之傾斜角設定為2∘,探討在不同主軸轉速及進給速度下對於銲道性質之影響,將各成功接合之試片進行顯微組織及機械性質測試,並進行元素分布分析,最後進行殘留應力量測及抗腐蝕能力分析。 實驗結果顯示對接時主軸轉速設定1000 rpm、進給速度100 mm/min可以得到較好的銲道性質;搭接時則是主軸轉速設定1200 rpm、進給速度120 mm/min可以得到較好的銲道性質,兩種接合方法比較時,對接比起搭接可以獲得更好的抗拉強度。除此之外,兩種銲接方式都在攪拌區可以觀察到晶粒細化的效果,但是熱影響區晶粒較大,使熱影響區有硬度下降的趨勢,造成對接試片會在熱影響區發生斷裂;在搭接時兩種材料界面會形成硬脆的介金屬化合物,其硬度將近300HV高於純鈦母材,由於硬度高、延性差因此搭接試片斷裂時會發生在接合界面處。進行殘留應力量測發現摩擦攪拌銲接試片與典型的對接殘留應力相反,在銲道處顯示為壓應力。銲接件抗腐蝕能力的部分,銲道的攪拌區由於晶粒細化的緣故,其抗腐蝕性能優於其他區域。Item 316L不銹鋼與Inconel 600合金異質銲接之機械性質與抗腐蝕特性研究(2017) 游揚升; You, Yang-Sheng壓水式反應器的管路設備必須承受高溫高壓外,亦受水的化學作用與腐蝕的影響,因此經常使用具有高溫耐蝕性及高溫機械性質的不銹鋼或鎳基超合金做為結構件或管件材料,在較嚴苛的環境使用鎳基合金,而壓力槽體出水口則使用碳鋼或低合金鋼等材料,以降低成本。不同部位的異種金屬通常使用惰氣鎢極電弧銲接法接合,由於兩種合金之間存在組織、物理及機械性質等差異,在異質銲接後容易在界面處產生殘留應力而導致破壞。 本研究使用雙面式摩擦攪拌銲接技術與惰氣鎢極電弧銲接技術用於Inconel 600合金與316L 不銹鋼的異質接合,摩擦攪拌銲接法利用含鈷之碳化鎢製作攪拌頭,攪拌頭傾斜角1°、轉速設定800 rpm、進給速率50 mm/min,可以成功接合並無缺陷產生,惰氣鎢極電弧銲接則比較不同電流大小,並探討添加AMS 5786填料與否對銲道造成的影響。將各成功接合的試片進行顯微組織及機械性質之影響,並進行元素分析,最後進行殘留應力量測及抵抗沿晶腐蝕能力分析。 實驗結果顯示,惰氣鎢極電弧銲接之接合件銲道硬度、拉伸強度及伸長率都明顯下降,拉伸斷裂點位於銲道熔融區;而利用摩擦攪拌銲接之接合件銲道硬度、拉伸強度及伸長率都顯著的提升,拉伸斷裂點位於316L不銹鋼母材。顯示摩擦攪拌銲接具有優良的接合效果,並且可以降低銲件之殘留應力,但是在攪拌區進給邊的抵抗沿晶腐蝕能力則會下降。另外可以觀察到在異質接合後,Inconel 600合金在硝酸中的腐蝕速率高於316L 不銹鋼。