機電工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/84

系所沿革

為迎合產業機電整合人才之需求,本校於民國 91年成立機電科技研究所,招收碩士班學生;隨後並於民國93年設立大學部,系所整合為「機電科技學系」,更於101學年度起招收博士班學生。103學年度本系更名為「機電工程學系」,本系所之發展方向與目標,係配合國家政策、產業需求與技術發展趨勢而制定。本系規劃專業領域包含「精密機械」及「光機電整合」 為兩大核心領域, 使學生不但學有專精,並具跨領域的知識,期能強化學生之應變能力,以適應多元變化的明日社會。

教學目標主要希望教導學生機電工程相關之基本原理與實務應用的專業知能,並訓練學生如何運用工具進行設計、執行、實作與驗證各項實驗,以培養解決機電工程上各種問題所需要的獨立思考與創新能力。

基於建立系統性的機電工程整合教學與研究目標,本系學士班及研究所之教育目標如下:

一、學士班

1.培育具備理論與實作能力之機電工程人才。

2.培育符合產業需求或教育專業之機電工程人才。

3.培育具備人文素養、專業倫理及終身學習能力之機電工程人才。

二、研究所

1.培育具備機電工程整合實務能力之專業工程師或研發人才。

2.培育機電工程相關研究創新與產業應用之專業工程師或研發人才。

3.培育具備人文素養、專業倫理及終身學習能力之專業工程師或研發人才。

News

Browse

Search Results

Now showing 1 - 10 of 21
  • Item
    先進雷射石墨烯結構製程技術於生物分子元件應用之研究
    (2018) 陳肇祈; Chen, Zhao-Chi
    多功能生醫晶片的實現,用於人類的醫療保健上,除在生活中預防疾病發生外,更能即時甚至提前預測以獲得病患身體檢測之訊息,進一步於醫院接受更完整與深入治療,使病患在疾病之初期,立即獲得有效的診療。本研究在開發先進雷射(Advanced laser)於石墨烯(Graphene)圖案化電極製作及應用技術,以脈衝雷射剝離(Pulsed laser ablation, PLA)製程直寫(Direct writing)方式,在多層石墨烯(Multi-layer graphene, MLG)薄膜基材,進行製程材料的探討與感測元件的製作。本研究所使用的先進雷射系統,包括波長355 nm與532 nm的超快皮秒脈衝雷射(Ultrafast picosecond pulsed laser, 355/532-UPPL)及波長355 nm的奈秒脈衝雷射(Nanosecond pulsed laser, 355-NPL)。藉此先進雷射剝離製程,探討與多層石墨烯薄膜材料間之影響及特性分析,以製作感測電極結構元件。同時搭配微流體元件(Microfluidic device)設計和靜電紡絲(Electrospinning nanofibers)技術,實際應用於不同生物分子之元件檢測。 本研究以雷射製程技術於葡萄糖(Glucose)檢測元件的應用上,在加入葡萄糖氧化酶(Glucose oxidase, GOD)前/後,其皆呈現線性關係。然而,GOD的電特性是能夠直接通過監測多層石墨烯導電薄膜來獲得的,該電性響應顯示良好的葡萄糖檢測濃度範圍為1 mM到10 mM。此外,在微流體元件的應用上,以順時鐘(Clockwise)方式製作陣列柱狀微流道(Pillar array channels)結構,其具有少量的熔渣(Dross)與平滑的表面特徵,利用實驗結果之模型預測,玻璃基板(Glass substrate)的移除率(C)可達到0.04 μm/pulse。在靜電紡絲奈米線實驗中,PVA-G混合奈米線透過少量摻雜(濃度為6%)石墨烯薄片是可降低薄膜之電阻,並且能夠在溫度60 °C下進行操作,消耗電功率(Electric power, P)為265.25 mW。在相對溼度(Relative humidity, RH)為80%時,其較佳的濕度檢測之電性響應(Electric response)、反應時間(Response time)及恢復時間(Recovery time)性質分別顯示為66.4%、11 sec和35 sec。在聚合酶連鎖反應(Polymerase chain reaction, PCR)元件的實驗中,陣列孔洞之快速熱循環(Hole arrays-rapid thermal cycling, HA-RTC)元件顯示在60分鐘的時間能夠於人類多瘤性病毒(BKV)的標記物(Marker),以及其在354鹼基對(Base pair, bp)的VP1片段完成診斷(增幅),證實以多層石墨烯薄膜電極製作之微型加熱元件是較佳溫度保持以及熱傳導之特性。 本研究以先進脈衝雷射一次性製程(Single-step process)技術,達成免光罩(Mask-less)、微型化、快速製作及微量偵測之需求,在生醫檢測元件設計與應用,並以石墨烯材料製作薄膜檢測元件之特性,在靜電紡絲製作混合奈米線應用於生物分子之檢測獲得到驗證。
  • Item
    氧化鎢薄膜沉積於ITO玻璃及SKD-11工具鋼上之特性分析研究
    (2018) 游証鈞; Yu, Cheng-Chun
    氧化鎢(Tungsten oxide,WO3)薄膜具有化學穩定性及數個過渡相,適當的控制氧化鎢的化學劑量比與組織、結構等,可以有利於提昇薄膜的機械性質,且有研究指出氧化鎢薄膜具抗磨耗特性,在機械工業上具有應用潛力。本研究利用電沉積法來製備氧化鎢薄膜。為了完整探討成長薄膜之製程、特性與應用,本研究首先將進行製程參數探討與特性分析,使用電沈積法分別在氧化銦錫 (ITO) 導電玻璃以及SKD-11工具鋼上沉積氧化鎢薄膜,經由控制沉積時間及熱處理條件獲得不同膜厚、表面粗糙度以及薄膜結晶性等物理特性,以求出薄膜製程的最佳化參數。接著再以SEM、XRD、奈米壓痕機、磨耗試驗機等儀器對薄膜進行表面形貌觀察、結晶分析、接觸角量測、奈米壓痕測試、磨耗實驗等量測分析,並針對薄膜的表面粗糙度、結晶性、硬度、楊氏係數與抗磨耗等特性探討。實驗結果顯示,熱處理溫度為影響氧化鎢薄膜結晶性的主要因素;以ITO為基板沉積的氧化鎢薄膜,在經過350℃退火後開始轉變為結晶相,並在經過500℃以上退火後出現明顯之氧化鎢(200)立方晶特徵峰;而以SKD-11為基板沉積的氧化鎢薄膜,在未經退火及400℃以下的熱處理條件,薄膜呈非晶態;在經過500℃以上的熱處理條件後結晶轉變形成立方晶結構。結晶性則影響了薄膜的表面粗糙度、硬度、楊氏係數等,非晶型態的薄膜表面並未生成明顯的晶粒結構,所以表粗較低,而經過熱處理之薄膜因晶粒逐漸成長而具有較大的表面粗糙度;而經過500℃以上熱處理後,氧化鎢薄膜具有規則排列之晶格結構,所以表面粗糙度反而些許下降;並從奈米壓痕實驗中可得知,經過熱處理後的氧化鎢薄膜,具有較佳的硬度及楊氏係數;而硬度及楊氏係數則會間接影響氧化鎢薄膜的耐磨耗性能,從磨耗實驗數據得知本研究之氧化鎢薄膜與單純母材試片相比,確實具有一定的抗磨耗特性,且其中經過熱處理的薄膜抗磨耗特性更是優於其他參數。綜合以上所述,本研究之電沉積氧化鎢薄膜經過適當的熱處理後,各項性質如硬度、楊氏係數及耐磨耗性等皆會提升。
  • Item
    運用影像增強技術於高分子分散液晶透明顯示器
    (2018) 梁庭綱; Liang, Tung-Gang
    本研究為專注於影像增強技術運用於高分子分散液晶透明顯示器中(Polymer-Dispersed Liquid Crystal (PDLC))上的影像處理,其為一種製造透明顯示器的材料,而PDLC具有高透明度、低電壓驅動,易於製造等特點,可作為便攜式顯示器使用。 於透明顯示可見的實際影像由輸出影像與背景光等等組成,與原始影像相比有一些缺點,譬如色彩不飽和、低分辨率。簡單影像可以直接增強對比度調整,但複雜的影像常常經調整後會失真和異常,而為了克服這些問題,我們採用影像的霧化模型模擬透明顯示器,暗通道先驗來銳化影像並結合引導濾波來優化暗通道先驗估計的參數,但是這些過程將導致灰階值下降,將會降低部份影像低灰階部份的分辨率,所以我們提出能將目標直方圖區域獨立運算的方法來解決問題。保持其他更較高灰階區域的影像不變,最後可以得到銳化的影像,而其可以適應透明顯示的干擾,達成增強影像的色彩飽和度、分辨率,甚至顯示器的透明度都有所改善,使得於透明顯示器所見的實際影像更接近原始影像,更加清晰明瞭。
  • Item
    積分型干擾觀測器於週期性干擾補償之設計與實現
    (2018) 張上豪; Chang, Shang-Hao
    本文使用干擾估來提升伺服馬達旋轉位置的精度,其針對重覆運動所產生的週期性干擾進行估測,並補償至控制系統中達到訓練機械精準地完成動作。為了驗證控制器的功效性,本文使用伺服馬達裝載四連桿機構產生非線性的干擾,四連桿機構在運行時會通過死點,對系統帶來極大的干擾,不易即時地達到準確的估測。 本研究是在干擾估測器中加入反覆學習機制,來改善對於週期性干擾的估測能力,利用週期性干擾訊號每隔固定的時間就會重覆的特性,使得反覆學習機制可以漸進地逼近未知的訊號。相較傳統的方式,本研究的干擾觀測器針對於週期性干擾有更好的估測能力,當伺服馬達負載快速的變化時,干擾估測能力的提升可以提高位置控制的精準。 在實驗平台方面,使用三菱無刷伺服馬達,並使用美國德州儀器(Texas Instruments, TI)公司生產TMS320C6713 DSP開發板進行數位訊號處理,搭配具備FPGA、ADC、DAC等的擴充子板。在FPGA方面,利用VHDL硬體描述語言實現數位電路,進行訊號擷取;而在控制法則實現上,透過TI提供的Code Composer Studio (CCS)發展環境,以C/C++撰寫控制器程式並下載到DSP上執行,進行非線性平台的定速控制實驗。由實驗結果顯示,本研究提出之方法能有效地估測系中週期性干擾。
  • Item
    應用於透明液晶顯示器的高對比背光模組設計
    (2018) 許聖國; Shu, Sheng-Guo
    本論文提出一款可用於高透明液晶顯示器的背光模組,能夠滿足高透明且背景清晰可視。為了滿足此條件,本模組不使用傳統增亮膜片、擴散片與反射片,而是使用一塊微結構導光板(Light Guide Plate, LGP)在法線方向上產生均勻的出光。導光板的下方設計一種V型溝槽微結構,既可以讓出光方向在法線方向附近,又可以維持本身的透明度而使得背景可視。由模擬結果顯示:本模組在尺寸長寬高1500x750x4 (mm)情況下,其均勻度為88.3%,出光效率為53.3%,出光峰值角度為-0.994度。此外,為了增加背光模組的對比,本論文提出採用多片小面積微結構導光板拼接的方式進行局部點亮(Local Dimming),並設計出了一種具透明性的遮瑕縫膜片用以遮蔽拼接處的縫隙。由模擬結果顯示:小面積導光板的均勻度為87.2%,出光效率為36.72%,出光峰值角度為0.743°。
  • Item
    多重技術整合之微機電式μDMFC開發與性能評估
    (2018) 傅品齊; Fu, Pin-Chi
    直接甲醇燃料電池(Direct methanol fuel cell, DMFC)具備能於低溫下工作、能量密度高、啟動速度快、燃料易取得、易攜帶、安全與穩定與低污染等優點,因此在未來有希望能取代鋰電池成為新一代的行動能源裝置。本研究以微機電系統(Micro-electromechanical system, MEMS)技術製作微型直接甲醇燃料電池(DMFC) ,並簡化元件結構與降低生產成本,以因應未來將其應用於行動電子產品之微小化需求。本研究主要以矽晶片作為燃料電池之基材,並整合「TMAH濕蝕刻技術」、「光輔助電化學蝕刻技術」、「PtRu二元金屬化鍍技術」以及「甲醇改質技術」,製作微流道搭配多孔矽(Porous silicon, PS),以及微流道搭配穿孔矽(Through silicon via, TSV) 擴散層結構之燃料電池電極板,並將其應用於微型直接甲醇燃料電池的製作。 本研究成功將PtRu二元金屬均勻複合於石墨烯與奈米碳管表面(PtRu/G-CNT),其Pt與Ru含量比分別為34.1 Wt.%與2.6 Wt.%,而在半電池表現,PtRu/G-CNT之氧化電流峰值為5 mA/cm2,是Pt/G-CNT以及PtRu/G的2.02倍與2.4倍。在電極組合部分,陽極與陰極分別使用多孔矽擴散層電極和穿孔矽擴散層電極的組合(PS+TSV),能得到最佳的電池性能表現,其最大開路電壓為0.4 V,與PS+PS相比增加約1.5倍,而與TSV+TSV相比增加約6.7倍。在添加界面活性劑改質甲醇燃料的評估試驗中得知,界面活性劑MA適於作為甲醇之濕潤劑,並能從添加濃度控制對甲醇氧化能力與濕潤性之影響,同時也能增加二氧化碳氣泡脫離,避免覆蓋觸媒層造成毒化,進而提升燃料電池之性能表現。在添加界面活性劑MA量為0.1 %時,其最大功率密度為0.336 mW/cm2與最大開路電壓為0.48 V,相較於未添加界面活性劑MA分別提升了1.4倍與1.2倍,說明加入少量界面活性劑能促進甲醇藉由多孔矽擴散至觸媒層進行反應,但若加入過多界面活性劑將會影響甲醇氧化效率,因而造成電池性能的下降。
  • Item
    以單軸追跡的高效能平面式日光集光器
    (2018) 郭志軒; Kuo, Chih-Hsuan
    本論文提出一款以單軸追跡的高效能平面式日光集光器,使用具有拋物線截面輪廓的圓弧狀微結構以及複合拋物面集光器(Compound Parabolic Concentrator, CPC)分別作為第一段與第二段集光結構。第一段集光結構利用全內反射將入射的太陽光耦合到下方的導光板並在導光板內藉由內部全反射行進並且在導光板末端端面上聚焦。第二段集光結構則在端面聚焦處將光線導引到末端處並對光線做進一步集中。第二段集光結構具有三種不同尺寸的CPC與設計參數,分別對應不同入射條件的光線,根據入射光角度變化而平移。除了能取代一轉動軸的追跡外,還能夠有效提高集光倍率。 最後,將集光部分做多層堆疊後搭配單一轉動軸追跡裝置構成此平面式日光集光器。由模擬結果顯示:以裝置在台北為例,總長度為88公分、考慮太陽光譜為AM1.5,在全年維持單軸追跡的情況下,最高與最低效率分別為56.7%與33.1%,最高與最低的集光倍率分別為623與134。
  • Item
    心跳感測器輔助影像深度學習應用於臉部痛苦指數之判別
    (2018) 陳梓瑄; Chen, Zi-Xuan
    本研究提出了一種估計人臉疼痛強度的方法。使用回歸卷積神經網路訓練模型,其中包含三層卷積層及三層池化層。此外,使用心跳感測器幫助臉部疼痛識別,目的是更準確地判斷人的疼痛程度。在兩個感測器的偵測及相互輔助下,可以極大程度的預防危險性的發生。例如使用在跑步、復健及醫療上,若能夠第一時間偵測到使用者的痛苦指數及心跳數異常,將能有效且迅速的做第一時間的處理。同時,本論文另一個貢獻為根據醫療及運動等相關文獻做出實際測試結果,將心跳感測與臉部疼痛做出結合與應用,並且能實際應用於生活當中。 本研究結果顯示,i5雙核計算機的MSE為0.11,Pearson相關係數接近1(r = 0.98),平均運算速度達到70 FPS。除了能夠高速運算臉部痛苦指數,也能迅速對硬體下達指令。
  • Item
    應用於橢圓車削之新型快速刀具滑台設計
    (2018) 汪詩偉; Wang, Shih-Wei
    本論文的主要目的是以軟體控制靠模數控車床為基礎,針對橢圓截面或橢圓軸,設計出創新的機構式快速刀具滑台來對加工件進行車削加工,實現大行程、高精度之橢圓外形。本論文先建構該快速刀具滑台之數學模型而後分析其運動學,包含曲柄旋轉角度(θ_2)、搖桿的擺動角度(θ_4)、刀具的位移(r_6)、速度(〖Vol〗_c)、加速度(〖Acc〗_c)及急跳度(〖Jerk〗_c),再以粒子群演算法(Particle Swarm Optimization)來得到當急跳度最小時的最適合連桿尺寸。該快速刀具滑台上結合電子凸輪(Electric Cam)來做刀具軌跡規劃,補償車刀因位移所產生的誤差量。最後本論文以試製機台探討該快速刀具滑台對於橢圓車削後的精度,包括刀具空切模擬橢圓車削與工件的實際橢圓車削。從結果顯示,橢圓率為0.0862(切深小)與0.3965(切深大),兩者皆以120rpm來進行車削,橢圓率小者所得到之橢圓輪廓精度優於橢圓率大者。由此可知,橢圓車削誤差主要和刀具的最大切深有關,而非主軸轉速。車削量愈多,其橢圓輪廓誤差量就愈大。研究結果顯示本論文所提出之快速刀具滑台在橢圓車削之可行性。
  • Item
    導電奈米纖維複合RuO2/Graphene應用於超級電容之研製
    (2018) 陳文璽; Chen, Wen-Hsi
    超級電容器(Supercapacitors)依其能量儲存機制可分為靜電儲能的電雙層電容器(Electrical double-layers capacitors, EDLC)與電化學儲能的擬電容器 (Pseudocapacitor)兩大類,比起傳統的電容器(陶瓷電容器、鋁質電解電容器、塑膠薄膜電容器、鉭質電容器等),具有更高的比功率(Wg-1)和比電容(Fg-1),並且有很優異的循環壽命與穩定性,故在電動車與消費性電子的應用前景受到注目。然而,目前超級電容器的電極製作,大都只使用平面金屬電極,造成感應電荷的傳輸性與電解液的質傳性受到限制,或者必須使用大量導電高分子(PANi)作為電活性(electroactive)材料,才能達到快速可逆氧化還原反應,獲得高密度儲能的效果。 因此,本研究為實現低成本全碳3D電極之製作,利用2×2 cm2人造石墨作為基板,並使用黃光微影製程以SU-8厚膜光阻,製作1.8×1.8 cm2之陣列圓柱微結構 (ϕ40 μm、深寬比5、間距 80 μm),接著利用靜電紡絲技術,並以SU-8濃度比例為SU-8:thinner=5:1作為紡絲溶液,製備奈米紡絲纖維 (Nano spinning fiber)。完成後,利用碳-微機電系統(C-MEMS)技術,將上述製備之SU-8圓柱結構與SU-8奈米紡絲纖維,以兩段式升溫方式進行碳化,使SU-8材料轉變成類玻璃碳(Glassy carbon)材料,進而得到導電圓柱結構(Conductive cylindrical structure)與線徑約730 nm碳奈米纖維(Carbon nanofiber),後續再將碳奈米纖維進行均勻破碎,以便製備複合石墨烯(Graphene)、二氧化釕(RuO2) 之漿料。以NMP@PVDF所製備之黏著劑(Binder)作為溶劑,將石墨烯、二氧化釕與破碎之碳奈米纖維進行混合,分別得到單純碳奈米纖維(CF)、碳奈米纖維複合石墨烯(CF/GN)與碳奈米纖維複合石墨烯/RuO2 (CF/GN/RuO2)等三種不同材料摻入的複合纖維漿料。利用滴定技術分別將上述三種複合漿料,滴置於全碳之3D導電圓柱結構電極板中,藉此沉積複合之碳纖維薄膜(Carbon fiber membrane, CFM),最終完成三種不同材料摻入的全碳3D電極板之製作。最後,製備完成之全碳對襯電極(Symmetrical electrodes)封裝成超級電容元件,並利用恆電位儀進行C-V特性曲線(C-V curve)、恆電流充放電曲線(Galvanostatic charge/discharge curve)與電荷轉移阻抗(Rct)等量測分析。量測結果發現CF/GN之電容性能以石墨烯摻入比例20 wt%為較理想、CF/GN/RuO2以RuO2摻入比例30 wt%為較理想。在0.5 A/g的電流密度下,CF、CF/GN與CF/GN/RuO2三種電極之比電容值,分別為62.4 F/g、96.5 F/g與219.2 F/g。CF/GN/RuO2電容元件的比電容值相較於CF/GN電容元件高出2.3倍、比CF之電容元件高出3.5倍,且當電流密度增加至3 A/g,CF/GN/RuO2之電容元件仍擁有54.8%的電容保持率。經過1500次的充放電測試,CF/GN之電容元件循環壽命保持率為62.2%,而CF/GN/RuO2之電容元件,仍擁有85.7%的保持率。由於導電圓柱結構與碳奈米纖維具有優異的導電性與比表面積,摻入石墨烯可提升電極之導電率,進而降低電荷轉移阻抗(Rct),而摻入RuO2可增加電極之電活性,因此提升整體電容的特性。