應用於透明液晶顯示器的高對比背光模組設計
No Thumbnail Available
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
本論文提出一款可用於高透明液晶顯示器的背光模組,能夠滿足高透明且背景清晰可視。為了滿足此條件,本模組不使用傳統增亮膜片、擴散片與反射片,而是使用一塊微結構導光板(Light Guide Plate, LGP)在法線方向上產生均勻的出光。導光板的下方設計一種V型溝槽微結構,既可以讓出光方向在法線方向附近,又可以維持本身的透明度而使得背景可視。由模擬結果顯示:本模組在尺寸長寬高1500x750x4 (mm)情況下,其均勻度為88.3%,出光效率為53.3%,出光峰值角度為-0.994度。此外,為了增加背光模組的對比,本論文提出採用多片小面積微結構導光板拼接的方式進行局部點亮(Local Dimming),並設計出了一種具透明性的遮瑕縫膜片用以遮蔽拼接處的縫隙。由模擬結果顯示:小面積導光板的均勻度為87.2%,出光效率為36.72%,出光峰值角度為0.743°。
This paper proposes a backlight module that can be used for high-transparent liquid crystal displays to satisfy high transparency and clear background visibility. In order to meet this condition, the module does not use a conventional brightness enhancement film, a diffusion sheet and a reflection sheet, but uses a Light Guide Plate (LGP) to produce uniform light emission in the normal direction. A V-groove microstructure is designed below the light guide plate to allow the light exiting direction to be near the normal direction and to maintain its transparency to make the background visible. The simulation results show that the module has a uniformity of 88.3%, a light central efficiency of 53.3%, and an beam peak angle of -0.994 degrees in the case of a size of 1500x750x4 (mm). In addition, in order to increase the contrast of the backlight module, this paper proposes the use of multiple small-area micro-structured light guide plate splicing method for local lighting, and designed a transparent concealer film for concealing the gap at the splicing. The simulation results show that the uniformity of the small-area light guide plate is 87.2%, the light central efficiency is 36.72%, and the light beam peak angle is 0.743°.
This paper proposes a backlight module that can be used for high-transparent liquid crystal displays to satisfy high transparency and clear background visibility. In order to meet this condition, the module does not use a conventional brightness enhancement film, a diffusion sheet and a reflection sheet, but uses a Light Guide Plate (LGP) to produce uniform light emission in the normal direction. A V-groove microstructure is designed below the light guide plate to allow the light exiting direction to be near the normal direction and to maintain its transparency to make the background visible. The simulation results show that the module has a uniformity of 88.3%, a light central efficiency of 53.3%, and an beam peak angle of -0.994 degrees in the case of a size of 1500x750x4 (mm). In addition, in order to increase the contrast of the backlight module, this paper proposes the use of multiple small-area micro-structured light guide plate splicing method for local lighting, and designed a transparent concealer film for concealing the gap at the splicing. The simulation results show that the uniformity of the small-area light guide plate is 87.2%, the light central efficiency is 36.72%, and the light beam peak angle is 0.743°.
Description
Keywords
側入式LCD, 透明顯示器, Edge-lit LCD, Transparent display