學習資訊專業學院—圖書資訊學研究所

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/22

國立臺灣師範大學(本校)於民國四十四年成立社會教育學系圖書資訊學組,為臺灣最早成立之圖書資訊學相關科系。為培育知識經濟社會所需之高階圖書資訊服務人才,本校於民國九十一年成立圖書資訊學之獨立研究所(本所),隸屬本校教育學院,招收一般碩士生。

為提供在職圖書資訊服務人員之進修管道,本所於民國九十四年續接社會教育學系(社教系)之「圖書資訊學碩士學位在職專班(週末班)」及「學校圖書館行政碩士在職專班(暑期班)」,以培育具備資訊科技知能之圖書資訊服務人才。

為進一步推動跨領域合作,本所於民國九十五年與本校美術系、歷史系、國文系及產業界專家等共同籌設「數位內容與創新應用學分學程」,以培育兼具數位內容創作與加值應用之人才。因應圖書資訊學研究之變遷與知識服務產業之發展趨勢,本所於民國九十七年奉教育部核准成立博士班,並於民國九十八年招收第一屆博士生,以培育兼具圖書資訊學學術研究與管理領導能力之人才。

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    惡意內容文本自動分類之研究
    (2025) 楊雪子; Yang, Yukiko
    本研究旨在探討如何運用多種人工智慧模型,對網路社群平台上的多標籤惡意文本(Toxic Content)進行分類與分析,並比較不同模型在多標籤分類任務中的成效。隨著社群媒體的普及,惡意評論與網路霸凌等問題日益嚴重,對使用者心理健康與社會互動造成負面影響。為有效偵測並管理有害內容,本研究選取來自Jigsaw釋出的Toxic Comment Classification涵蓋多重標籤的開放資料集,進行文本分析的實驗。研究將模型分為三大組:傳統機器學習模型組(如Logistic Regression、Random Forest、Naive Bayes、XGBoost等)、深度學習模型組(如GRU、BiLSTM、LSTM、CNN等)、以及大型語言模型組(BERT、Grok、GPT、Gemini)來進行分組實驗,訓練後模型的效能則依照 ROC-AUC、準確率(Accuracy)、F1-score、Hamming Loss 等指標來進行效能評估。實驗結果顯示,大型語言模型組的BERT在多標籤資料集的分類的表現最佳(ROC-AUC分數達0.9782),傳統機器學習中的 Logistic Regression搭配TF-IDF特徵次之,這可認為推出多年的傳統機器學習模型面對新推出的大型語言模型,效能表現仍相當亮眼,且無須額外費用,對學術或非商業的需求亦是理想的選擇,本研究結果可作為未來建立高效、精準之惡意評論自動分類系統的參考依據。
  • Item
    健康心理因素文本自動分類之研究
    (2024) 曾偉紘; Tseng, Wei-Hung
    心理學的研究對象通常非常複雜,需要長期追蹤和研究。傳統的研究方法需要人工標記和評分,這不僅費時費力,還容易出現主觀性和一致性問題。目前大多數研究透過社群平台來找到研究對象。因此本研究希望透過社群平台找到研究資料,並利用機器以自動化的方式更有效的進行心理學研究。本研究要將心理健康方面的文本用人工智慧的技術,將其自動分類到5個面向中的11個指標,每個指標都有5個分數,並且期望在有限的人工標記的訓練資料下(每個類至少60筆資料),機器預測的準確度要能達到0.8以上(人工標記一致性平均分數為0.8011),以Macro F1為主要判斷標準。使用的技術包括機器學習、BERT、SetFit、GPT-3、GPT-4。就本研究的結果而言,機器學習與BERT雖然執行的時間成本低,但成效在各指標都無法達到理想的0.8。GPT-4也許因為是使用prompt的方式進行實驗,要它處理的任務太過於複雜,準確度無法像用訓練的方式來的好,所以也都沒有達到目標。GPT-3與SetFit的成效在多數指標上都有不錯的表現,GPT-3有5個指標達到目標,SetFit更是有7個指標達到目標,兩個指標只差1到2個百分點達到目標。 考量到GPT-3的執行時間成本很重(主要是1次request只能預測1筆資料),而SetFit只有訓練時間成本重而已,預測的速度是非常快速的,所以選用SetFit用於心理健康文本的自動分類是一個準確度高、預測時間成本低的方法。
  • Item
    應用關鍵字差異分析於立法委員選舉得票率預測之研究
    (國立台灣師範大學圖書資訊學研究所, 2017-10-??) 林應龍; 禹良治; Ying-Lung Lin, Liang-Chih Yu
    為探討臺灣立法委員選舉與網路新聞之關係及是否可使用網路新聞進行預測,我們使用2002年1 月1 日至2009 年12 月31 日之udn 網路新聞文本進行模型設計及訓練,以2008 年立法委員選舉得票率預測2012 年立法委員選舉得票率,並將實際得票率及預測得票率進行差異分析,觀察其相關性。而在視覺化部份,我們使用候選人詞彙差集和交集之社群網路圖呈現,快速呈現候選人特色。由於實際得票率影響變因十分複雜,在本研究中分析結果最佳平均絕對誤差約7%、相關係數約0.5,預測結果雖非十分準確,但其作為其中一類網路意見,用以補充電話民調,仍具有參考價值。本研究之主要貢獻在於應用自然語言處理及機器學習建構立法委員得票率之模型,說明如何處理稀疏矩陣及特徵選取之問題,最後我們說明情感分析的進一步應用,期許未來能有效從網路文本中提取有用資料以建構不同應用模型。
  • Item
    應用關鍵字差異分析於立法委員選舉得票率預測之研究
    (國立台灣師範大學圖書資訊學研究所, 2017-10-??) 林應龍; 禹良治; Ying-Lung Lin, Liang-Chih Yu
    為探討臺灣立法委員選舉與網路新聞之關係及是否可使用網路新聞進行預測,我們使用2002年1 月1 日至2009 年12 月31 日之udn 網路新聞文本進行模型設計及訓練,以2008 年立法委員選舉得票率預測2012 年立法委員選舉得票率,並將實際得票率及預測得票率進行差異分析,觀察其相關性。而在視覺化部份,我們使用候選人詞彙差集和交集之社群網路圖呈現,快速呈現候選人特色。由於實際得票率影響變因十分複雜,在本研究中分析結果最佳平均絕對誤差約7%、相關係數約0.5,預測結果雖非十分準確,但其作為其中一類網路意見,用以補充電話民調,仍具有參考價值。本研究之主要貢獻在於應用自然語言處理及機器學習建構立法委員得票率之模型,說明如何處理稀疏矩陣及特徵選取之問題,最後我們說明情感分析的進一步應用,期許未來能有效從網路文本中提取有用資料以建構不同應用模型。