科技與工程學院
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/5
沿革
科技與工程學院(原名為科技學院)於87學年度成立,其目標除致力於科技與工程教育師資培育外,亦積極培育與科技產業有關之工程及管理專業人才。學院成立之初在原有之工業教育學系、工業科技教育學系、圖文傳播學系等三系下,自91學年度增設「機電科技研究所」,該所於93學年度起設立學士班並更名為「機電科技學系」。本學院於93學年度亦增設「應用電子科技研究所」,並於96學年度合併工教系電機電子組成立「應用電子科技學系」。此外,「工業科技教育學系」於98學年度更名為「科技應用與人力資源發展學系」朝向培育科技產業之人力資源專才。之後,本院為配合本校轉型之規劃,增加學生於科技與工程產業職場的競爭,本院之「機電科技學系」與「應用電子科技學系」逐漸朝工程技術發展,兩系並於103學年度起分別更名為「機電工程學系」及「電機工程學系」。同年,本學院名稱亦由原「科技學院」更名為「科技與工程學院」。至此,本院發展之重點涵蓋教育(技職教育/科技教育/工程教育)、科技及工程等三大領域,並定位為以技術為本位之應用型學院。
107學年度,為配合本校轉型規劃,「光電科技研究所」由原隸屬於理學院改為隸屬本(科技與工程)學院,另增設2學程,分別為「車輛與能源工程學士學位學程」及「光電工程學士學位學程」。
News
Browse
18 results
Search Results
Item 石墨烯與二氧化鈦複合奈米機油應用於機車之性能研究(2024) 陳英彰; Chen, Ying-Chang本研究使用優異熱傳遞性奈米石墨烯(Gr)與耐磨耗性奈米二氧化鈦(TiO2),添加入SAE10W-40機油中以二階合成法製成(Graphene / Titanium dioxide hybrid nano-engine oil, GTHNO),期望複合奈米機油能夠具備兩種奈米材料特性。為確定GTHNO之性能是否達到優化效果,分別進行「基礎實驗」和「實車實驗」,其中基礎實驗:磨潤、黏度、導熱、比熱和沉降實驗等五項;實車實驗:ECE-40、定速、平路及爬坡實驗,並紀錄燃油消耗、廢氣排放和PM粒狀汙染物。本研究GTHNO備製比例固定Gr濃度0.03 wt.%,TiO2濃度分為0.01、0.05、0.1、0.3及0.5 wt.%,經過基礎實驗評比0.3 wt.%為最佳濃度;磨潤實驗0.3 wt.%表現最為優異,驗證了添加過多或過少TiO2濃度有極大的影響。黏度實驗0.5 wt.%擁有較高的黏度,表示增加TiO2將會導致黏度升高。熱傳導實驗0.3 wt.%擁有最佳的熱穩定性質。比熱實驗0.5 wt.%最易受溫度變化。沉降實驗0.3 wt.%趨進於最不容易沉澱的濃度。GTHNO實車實驗中能夠有效改善CO 16 %和HC 35 %,最大程度降低有害氣體汙染;而行駛於市區下PM粒徑改善率約4.4 ~ 27.5 %之間。燃油消耗率各行車型態測試之間改善率約0 ~ 3 %之間。Item 石墨烯奈米冷卻液應用於熱交換模擬平台與機車引擎性能之研究(2022) 羅煌傑; LUO, Huang-Jie使用市售用改質親水性石墨烯添加到機車原廠冷卻液製備成不同重量百分濃度之石墨烯奈米冷卻液(GrNC),並加入羧甲基纖維素(CMC)作為流體分散劑增加穩定性。分別進行沉降、黏度、比熱、導熱與磨潤等基礎性質實驗,依據實驗數據進行綜合性能分析評比並選出最佳濃度之GrNC後續進行熱交換模擬平台與實車性能之實驗。以原廠冷卻液為對照組與GrNC進行比較,沉降試驗為0.01 wt.%與0.07 wt.% GrNC表現較佳,可穩定至10天;黏度試驗0.09 wt.% GrNC改善了20.93 %;比熱試驗0.01 wt.% 與0.07 wt.% GrNC增加1.2 %與3.1 %;導熱試驗GrNC導熱值優於原廠冷卻液,0.01 wt.% 和0.09 wt.% GrNC導熱係數增加28.22 %和36.18 %;磨潤試驗結果GrNC可以減少磨耗量,0.01 wt.%和0.07 wt.% GrNC為最佳,分別改善6.89 %和7.34 %。由前述基礎實驗數據結果進行綜合分數評比,最終選定0.01 wt.%和0.07 wt.% GrNC作為後續熱交換模擬平台與實車性能實驗流體。使用GrNC為熱交換模擬平台工作流體來試驗水箱散熱性能與引擎暖車試驗中,與原廠冷卻液進行比較。得到在60 ℃時0.01 wt.%與0.07 wt.% GrNC散熱量提升5.19 %和8.01 %;80 ℃時散熱量分別改善8.42 %與19.51 %。且GrNC能加速流體加熱時間,0.01 wt.%與0.07 wt.% GrNC在60 ℃分別改善6.12 % 和8.74 %;80 ℃時改善7.56 %與8.68 %。而在實車性能ECE-40、定速、平路與爬坡試驗中,GrNC與原廠冷卻液比較,在溫度、扭矩、廢氣與PM排放各方面均有改善趨勢。0.01 wt.%與0.07 wt.% GrNC在散熱水溫差平均改善7 % 和16.18 %;機油溫度平均提升5.35 % 和3.52 %;齒輪油溫度平均提升7.8 % 和17 %;平路與爬坡瞬間扭矩GrNC平均提升87 % 和122 %。廢氣排放實驗,與原廠冷卻液比較0.01 wt.%與0.07 wt.% GrNC在HC排放中分別減少15.64 % 和14.46 %;CO減少53.9 % 與50.6 %;CO2增加23.59 % 與34.8 %。在PM總量排放方面,定速時分別減少31.45 % 和8.22 %;平路時分別減少29.76 % 和49.37 %;爬坡時分別減少38.57 % 和45.96 %。Item 飛秒雷射製作可撓性聚醯亞胺異質結構元件於氣體檢測之研究(2022) 葉力維; Yeh, Li-Wei本研究是利用超快飛秒雷射(Ultrafast femtosecond laser)之超短脈衝(Ultrashortpulses)的特性,在聚醯亞胺(Polyimide, PI)薄膜基材,製作指叉狀電極結構(Interdigitated electrode structures)元件於氣體檢測(Gas detection),該超快雷射製程具較小熱影響區(Heat-affected zone),以能進行可撓性基材之結構製作。為增加此元件感測之靈敏度,本研究亦利用水熱法製成氧化鋅(Zinc oxide)奈米線結構(Nanowires),在飛秒雷射製程製作之石墨烯PI電極元件上,以成型新穎複合結構元件於氣體檢測,以增加感測響應值。本研究顯示該可撓性元件可避免受力而導致斷裂、破壞的現象,且當彎曲曲率半徑小於6 mm響應值仍屬穩定(誤差值±3%)。元件設計的微型加熱器方面顯示,在一氧化碳(Carbon monoxide, CO)氣體從室溫到85.6°C可縮短恢復時間為86.2sec;甲烷(Methane, CH4)氣體則從室溫到約86.8°C可縮短恢復時間為117.2 sec。因此,在氣體感測元件方面顯示,一氧化碳和甲烷氣體檢測於200濃度200 ppm,其元件在甲烷與一氧化碳氣之電性響應值會分別為20.7 %和120.8 %。藉此,本研究證明氧化鋅/石墨烯可撓性微性加熱元件於一氧化碳和甲烷氣體濃度具有良好的恢復性,分別在1000 sec和1600 sec可恢復至初始電阻值,且該元件靈敏度則在加熱升溫環境會別為0.6728與0.0434為最佳。透過此研究,將可提供飛秒雷射製程於氣體檢測元件之應用參考。 關鍵詞: 飛秒雷射、可撓性元件、石墨烯、奈米線、氣體檢測Item 以超快雷射製作石墨烯/二硫化鉬元件結構於氣體檢測(2021) 韓同耀; Han, Tong-Yao本研究利用超快雷射製程 (Ultrafast laser processing technique)進行製作設計的微型加熱感測元件及其特性探討,同時整合二硫化鉬(Molybdenum disulfide, MoS2)材料,以開發異質結構(Heterostructure)元件於氣體檢測(Gas detection)應用。本研究是採以有限元素法(Finite element method, FEM),在設計的串/並聯電路之微加熱結構元件,進行熱性能和電路的電流密度之預測。在實驗方面,是利用超快雷射直寫技術於石墨烯(Graphene)薄膜,其固定重複率為 300 kHz,在振鏡掃描速度為 300 mm/s及雷射能量密度為 2.19 J/cm2,進行製程路徑次數 2 次後,完成不同寬度的薄膜電極元件製作及其檢測元件特性分析。研究結果顯示:在施加相同電壓條件下,串聯電路結構的微加熱器穩態溫度較低,且穩態溫度受電路形狀的影響較大,其原因是串聯電路結構的電阻會明顯大於並聯電路結構,因此該元件通過的電流較小,產生的焦耳熱也較小。此外,本研究於石墨烯感測元件搭配MoS2溶液,以滴鍍(Drop casting)技術,開發MoS2/石墨烯微型加熱感測元件,並比較石墨烯微型加熱感測元件,進一步進行氣體檢測之靈敏度探討。本研究結果在石墨烯微型加熱感測元件方面,顯示在溫度於92 oC時,該元件偵測氣體濃度於100、300和500 ppm時,氣體響應值(Response)會分別為1.4 %、7.2 %和17.7 %。本研究結果在MoS2/石墨烯微型加熱感測元件方面,顯示在溫度於92 oC時,該元件偵測氣體濃度於100、300和500 ppm時,氣體響應值分會別為1.7 %、4.9 %和12.3 %。因此,本研究證明MoS2/石墨烯微型加熱感測元件具有良好的恢復性,在50 s內該元件的檢測電阻可以恢復至原始電阻。Item 碳基高性價比散熱塗料之製備技術開發(2021) 洪大正; Hong, Da-Jheng隨著技術的進步,電子元件的效能不斷的增加,而體積亦朝向小型化發展,無可避免地,如何的幫助元件有效地散熱將構成挑戰。散熱塗層( Heat dissipating coat)由高分子材料構成基底,添加高熱輻射係數與高導熱性質的填料,能夠快速將所塗佈物體所產生的熱傳導至高熱輻射係數的塗層中,使得物體藉由熱輻射傳導至環境中的熱能大幅提升,屬於被動散熱的一種,設計散熱系統時也能與散熱鰭片搭配而獲得更好的效果,提供設計人員更多樣化的選擇。而目前的文獻較常見為使用通稱為奈米碳材的石墨烯以及奈米碳管作為填料,再藉由添加陶瓷粉末形成協同效應(Synergetic effect)來促進輻射散熱的效果。雖被證實有效,但受限於奈米碳材的成本高昂且不易大量生產,使得散熱塗料的推廣使用不易。此研究為奠基於本實驗室之前的成果,將原本的陶瓷添加物改為氧化鋁粉末,並改以常見且成本較低廉的碳黑、石墨粉和活性碳粉作為促進散熱的填料製備壓克力散熱塗料,再將完成的塗料噴塗於鋁片之上做為10 W的LED模組之散熱片,經實驗觀察在適當的添加量下最高能達到13.2 °C的降溫,而相比之下以1:1之重量比的石墨烯和多壁奈米碳管混合物做為填料的散熱塗料的試片最高降溫為13.7 °C,相差僅為0.5 °C,由此實驗結果可知本研究成功開發了一種高性價比的散熱塗料,並在成本上能滿足消費級產品的需求。Item 混合型石墨烯奈米結構於多工感測器之開發研究(2019) 高郁勝; Kao, Yu-Sheng可撓式與可穿戴式應變感測器對於人體運動檢測具有無限的潛力,並引起研究人員極大的興趣。在本論文中,我們提出一種以可撓的聚二甲基矽氧烷 (Polydimethyl Siloxane, PDMS) 為基板,加入低成本的石墨烯與石墨烯量子點奈米結構,開發出同時具備應變與光偵測之多工感測器。本研究共分為兩大類,第一部份為拉伸量測以及第二部份為照光量測。第一部份為加入不同次數 (濃度) 的石墨烯進行拉伸量測,在 SEM 拍攝下 20 次數 (濃度) 的石墨烯厚度為 50 μm 和 50 次的石墨烯厚度為 200 μm;在 50 次下所得到的應變因子 (Gauge Factor) 為 GF = 14,在 20 次下得到的應變因子為 GF = 76,並且形變量可以達到 30 % 以上。此外,我們也對該元件進行耐久性測量,以每拉伸 25 次數進行量測,經重複拉伸300次後,其電阻變化率從 4.5 變為 6.5,其改變量約為 14 %。第二部份為加入不同次數的石墨烯與石墨烯量子點進行照光量測,使用波長為 365 nm 的紫外光進行照光量測。發現隨著照光功率提升,電流會從 300 μA 提高至 410 μA,其提升約 30 %。我們預期本論文所開發之混合型石墨烯奈米結構多工感測器,在未來對人體運動檢測上,將能夠發揮重要作用。Item 以固態電解質與多孔矽電極實現抗壓耐震型超級電容之技術開發(2020) 陳信融; Chen, Shin-Rung超級電容(Supercapacitors)擁有快速充放電、功率密度高、元件壽命長等優點,可應用於行動通訊、車輛運輸、智慧電網等領域。然而,目前超級電容的製作技術中,許多是利用平面金屬電極,再加上碳海綿、碳氣凝膠或電紡絲碳纖維等3D多孔碳結構,意圖以增加碳活性材料之比表面積的方式,達到提高電容器功率密度之目的。然而,這些平面金屬加上3D多孔碳結構的電極,當元件受到大應力、高速撞擊與震動的作用下,這種平面金屬/多孔碳結構將產生嚴重的的脫層或塌陷而失效,使其無法應用於國防工業、航天太空、電動載具等抗壓耐震需求之超級電容上。 因此,本研究將使用三種製程方式製作矽基電極,第一種製程只使用光輔助電化學蝕刻(Photo-assisted electrochemical etching, PAECE)製程,在參數為氫氟酸10 wt% 界面活性劑酒精1 wt%、偏壓為3.5 V、蝕刻時間為8 hr的情況下,可以得到深度約為222 μm的隨機矽孔洞結構;第二種製程為使用黃光製程與反應性離子蝕刻技術,事先定義出陣列圖案的蝕刻窗後,再以光輔助電化學蝕刻技術製作,在參數為氫氟酸2.5 wt%、界面活性劑 DC 1 wt%、偏壓3 V、蝕刻時間 2 hr之下完成深度約為162 μm之矽孔洞結構;第三種製程為先使用ICP-RIE技術製作巨孔洞陣列結構,再以光輔助電化學蝕刻技術粗化孔洞結構內壁,參數為氫氟酸2.5 wt%、界面活性劑 DC 5 wt%、偏壓1 V、蝕刻時間 2 hr。三種多孔矽結構完成後,分別使用化學氣相沉積(Chemical vapor deposition)在其表面生成碳膜,此可鈍化多孔矽表面電荷陷阱(Surface charge traps)並增加導電性,再將混拌石墨烯薄片(graphene)、二氧化釕(RuO2)、高分子材料(PVA)的酸性電解液,以真空抽氣方式滲入多孔結構中並固化,以實現高抗壓耐震性超級電容之開發,後續再利用恆電位儀進行C-V特性曲線(C-V curve)量測、恆電流充放電曲線(Galvanostatic charge/discharge curve)等量測分析。由於使用第二種製備法之矽基電極在量產結構時遇到稜線蝕刻過度的問題,而不適用於超級電容之製作,第三組製程則是在組裝測試之後,C-V曲線中的電壓與電流呈線性關係,恆電流充放電曲線則是出現了充電進去之後電卻放不掉的現象,代表電容內阻過高,從這兩點推測選用之晶片阻值過高(>4000 –cm)導致電容無法正常運作,因此本研究先將重心放在第一種製程使用單純光輔助電化學蝕刻製作矽基電極,量測後發現在混入石墨烯 5 wt%以及二氧化釕 5 wt%的固態超級電容,在0.127 A/g的電流密度下graphene/RuO2的電容性能為1.5 F/g,並且經由50次循環充放電之後,仍保有88%的電容保持率,在承受30 g的加速度之下依舊保擁有95%的電容保持率,電容需負荷超過24.5 KPa之壓應力(2×2 cm2的電容承受1 kg)後才會破損,在此狀態下電容值仍然保有原有性能之55%。Item 應用超快雷射技術於石墨烯奈米銀金屬粒/聚醯亞胺複材之熱檢測元件探討(2020) 蕭鈞庭; Hsiao, Chun-Ting本研究利用超快雷射製程技術(Ultrafast laser processing technique)進行微結構(Microstructures)之熱元件(Heating device)製作及其特性之探討,以應用於氣體檢測(Gas detection)。在本研究中會使用超快雷射直寫技術分別於石墨烯(Graphene)/聚醯亞胺(Polyimide, PI)基材及奈米銀(Silver nanoparticles, AgNPs)/石墨烯/PI基材進行雷射測試,固定重複率為300 kHz、加工次數3次下,在振鏡掃描速度為500 mm/s及雷射能量密度為2.45 J/cm2,完成薄膜製程及元件製作,並依此參數製作不同寬度熱檢測元件。研究顯示在相同寬度5 mm下,石墨烯/PI基板給予功率6.10 W時,最高溫約134 ℃;奈米銀/石墨烯/PI基板給予功率5.83 W時,最高溫約104 ℃。另外,在相同寬度6 mm下,石墨烯/PI基板給予功率為6.10 W時,最高溫約110 ℃;奈米銀/石墨烯/PI基板給予功率4.48 W時,最高溫約113 ℃。進一步本研究顯示在寬度6 mm之奈米銀/石墨烯/PI基材熱檢元件,能給予較少功率,產生出100 ℃以上溫度,且基材彎曲90 o時,溫度仍能維持在100 ℃以上。同時,本研究搭配設計所製作的指叉狀(Interdigitated)電極元件進行氣體量測,研究顯示在一氧化氮(Nitric oxide, NO)濃度為650 ppm時,該元件電阻值可從78 上升至85 ,氣體響應值約9 %,且氣體響應值會隨氣體濃度增加而上升。Item 導電奈米纖維複合碳黑/石墨烯應用於鋁離子電池之研製(2019) 林至寬; Lin, Chih-Kuan可充電式之多價金屬離子電池由於具有高理論比電容值和較低之成本而受到廣泛的關注,其中,鋁具有存量豐富,安全性高,對環境友善和利用三電子進行氧化還原反應之高體積容量等優勢,被認為是下一代可充電電池的有力候選人。 本論文以SU-8 2050厚膜光阻為材料,使用黃光微影技術於尺寸2×2 cm2之鉬箔上製作SU-8圓柱陣列結構,並以靜電紡絲技術製備SU-8紡絲奈米纖維。接著透過靜電紡絲技術製備SU-8紡絲奈米纖維。再以兩段式升溫之高溫碳化製程將SU-8光阻轉變為類玻璃碳材料(Glassy carbon),完成直徑32 µm、深寬比5、間距80 µm之導電碳圓柱陣列結構以及線徑910 nm之碳奈米纖維(Carbon nanofiber)之製備。後續將碳奈米纖維以均質機破碎後,與石墨烯(Graphene)和碳黑(Carbon black)藉由NMP@PVDF黏著劑複合形成鋁離子電池陰極之電極漿料,並滴塗於導電圓柱陣列電極中,完成全碳之鋁離子電池陰極之製作。本論文選擇8組不同漿料用於製備鋁離子電池的陰極,包括未添加碳奈米纖維的漿料,以石墨烯:碳黑=1:0、1:1、1:5、1:8之比例製備四組電極,並於相同之石墨烯與碳黑比例下額外添加碳奈米纖維,再製備出石墨烯:碳黑:碳奈米纖維=1:0:0.5、1:1:0.5、1:5:0.5、1:8:0.5等四組電極。將電極均組裝成鋁離子電池元件後,透過恆電位儀進行循環伏安曲線(Cyclic voltammetry curve, C-V curve)測試以及恆電流充放電(Galvanostatic charge/discharge, GCD)之測試,評估電池之性能。量測結果發現,添加碳奈米纖維之四組電極的C-V 曲線面積,分別比未添加纖維之四組提升了660%、57%、-17%、314%。除石墨烯:碳黑:碳奈米纖維=1:5:0.5電極之C-V曲線面積有小幅度下降外,其餘電極之C-V 曲線面積均有大幅度提升,說明添加碳奈米纖維能夠提供更多比表面積供鋁離子嵌入與嵌出,進而提升電池效能。將上述8組電極所組裝而成之鋁離子電池中,選取性能較好之石墨稀:碳黑=1:1、1:5與石墨烯:碳黑:碳奈米纖維=1:0:0.5、1:1:0.5、1:5:0.5、1:8:0.5六組電極,以100 mA/g之電流密度進行恆電流充放電測試,並計算其比電容值,分別得到3.5、2.5、8.25、14、5、4 mAh/g的結果。其中,石墨烯:碳黑:碳奈米纖維=1:1:0.5之電極具有最高的充電比電容值12 mAh/g,以及放電比電容值14 mAh/g,並且具有85.7%之庫倫效率。此外,石墨烯:碳黑:碳奈米纖維=1:1:0.5與1:5:0.5兩組電極之比電容值,分別達到未添加碳奈米纖維電極的4倍與2倍。Item 利用皮秒雷射以可撓性導電技術於溫度感測元件之探討(2019) 林品均; Lin, Pin-Chun本研究利用皮秒雷射直寫(Picosecond laser direct-writing)技術於石墨烯薄膜(Graphene film )上,進行可撓性導電元件(Flexible conductive device)之製作,該元件設計是包含微加熱器(Micro-heater)與微感測器(Micro-sensor)之兩種電極結構。透過電極結構不同間距(Gap)的設計,探討微加熱器之熱電學特性,以及對於微感測器之靈敏度影響。進一步,本研究利用彎曲(Bending)實驗在可撓性導電元件進行穩定性測試。實驗結果顯示,當輸入電壓12 V時,微加熱器能夠於10 sec內快速提升至穩態溫度,其最高溫度可以達到85 °C,以及具有均勻熱分佈之效果。進一步,當微加熱器之電阻值分別控制為206.90±6.21 Ω及290.25±8.71 Ω時,在輸入電壓12 V下分別能夠達到90.54±6.06 °C與53.55±3.85 °C,說明了製備較低電阻值之微加熱器能夠得到更佳的升溫特性。此外,利用微加熱器作為熱源,能夠使微感測器的電阻產生變化,藉此獲得溫度感測器調控之驗證。實驗結果顯示,當改變間距從1300 μm 至100 μm時,其元件靈敏度值自3.35×10-4 °C-1提高至14.7×10-4 °C-1,大幅增加了77.21 %,證明當兩電極的間距愈接近時,其靈敏度會增加。最後,本研究進行可撓性導電元件之彎曲次數100次循環下,該元件電阻與溫度性質不受影響,其誤差值分別在±5 %與±5 °C,說明此研究開發之石墨烯導電薄膜元件,具有良好的抗彎折特性,以應用於可撓性導電元件之溫度感測。