學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73909
Browse
2 results
Search Results
Item 以多重表徵的模型教學探究高二學生理想氣體心智模式的類型及演變的途徑(2007) 鍾曉蘭; Shiao-Lan Chung在學習化學的歷程中,不論是物質三態、理想氣體模型、碰撞學說與平衡的相關概念的科學學習上,微觀的粒子概念是理解化學概念的重要基礎。然而,學生在日常生活的觀察之中,不容易察覺與體驗出化學概念中微觀世界的想法,導致在學習理想氣體粒子模型與氣體動力論困難重重,甚至對於氣體的巨觀現象做出許多錯誤的推理因,而產生許多的迷思概念或另有概念(Novick & Nussbaum,1981;Millar,1990;Benson et al., 1993)。本研究根據文獻所提及氣體粒子的迷思概念/心智模式類型,設計出一系列相關氣體體積、壓力、蒸氣壓、擴散與微觀世界中氣體粒子運動關係的診斷式紙筆測驗(預試對像為高三學生,男:45,女:37,共計82人,信度為0.913),來探討學生理想氣體心智模式的類型。在教學方面,根據理想氣體粒子模型的特性(剛性粒子、隨機運動等)設計符合其現象及屬性的多重表徵的模型教學,藉著分析心智模式類型的分佈與演變途徑,及比較教學前、後及延宕測驗中3C(Correctness、Consistency、Completeness)的演變情形(Chi & Roscoe,2002;Vosniadou,2002;邱美虹,2006),來瞭解多重表徵的模型教學(實驗組為39人,男:27、女:12)是否比傳統文本教學(控制組為40人,男:32、女:8)更能有效增進學生對於理想氣體的科學學習與概念改變。 經過兩週(共計八節課)教學後,分析兩組學生教學前、後的正確性(correctness)、一致性(consistency)與完整性(completeness),以及五次動態評量的答題情形,研究結果摘要如下: (1)在教學成效方面:實驗組與控制組兩組學生在教學前並未達顯著差異(paired-t test,正確性:t=.781,p=.440; 一致性:t=1.705,p=.081; 完整性:t=1.04, p=.306),教學後則達到顯著差異(ANCOVA ,正確性:F=36.4,p=.000; 一致性:F=40.9,p=.000;完整性:F=42.4,p=.000)。特別在微觀方面,實驗組的正確性顯著優於控制組(F=43.6,p=.000),顯示出藉由多重表徵的教學方式,的確有助於學生建立正確的微觀氣體粒子運動模型。 (2)在教學過程的動態評量中,兩組學生除了第二次評量未達顯著差異,實驗組在其他四次評量的得分率皆顯著優於控制組。 (3)研究者以學生回答診斷式試題中六題相關氣體壓力微觀的解釋理由,來判斷學生的心智模式,並歸類出學生的心智模式共有十大類型:科學模式、科學有瑕疵、科學+其他、分子量模式、體積模式、引力模式、動能模式、活性模式、兩種心智模式並存的雙模式,以及不一致的混合模式。實驗組學生對於氣體壓力主要心智模式的演變途徑為:混合(30.1%)→科瑕(35.8%)→科瑕(46.1%);控制組學生對於氣體壓力主要心智模式的演變途徑為:混合(45.0%)→混合(45.0%)→混合(37.5%)。實驗組學生心智模式的演變朝向科學模式/科學有瑕疵的方向邁進,控制組的學習活動中由於缺乏與現象相同屬性(動態-隨機)的多重表徵,較難引發學生建立正確的心象,因而控制組學生心智模式的改變並不多。 (4)多重表徵的模型教學與動態評量有助於學生建立突現過程本體:實驗組學生經由視覺混合、具體混合、數學混合與動作混合等多重表徵的模型教學後,建立了完整的剛性粒子的概念,並深入瞭解粒子微觀的運動是隨機的、瞭解氣壓的成因是快速運動的粒子對容器壁碰撞時的單位體積內動能轉移,因此教學後有48.7%的實驗組學生產生跨越本體及直接過程轉變成突現過程等較困難的概念改變,另外有20.5%的實驗組學生在學習過程中逐漸演變成突現過程。 (5)從學生開放式的問卷中,我們可以瞭解到大部分的學生對於多重表徵模型教學的情意面向是正面的反應居多。 本研究嘗試將多重表徵的模型教學融入理想氣體教學中,研究結果顯示教學成效顯著優於傳統文本教學,建議科學教師在課室活動中可以在時間許可下採用模型教學。藉由呈現模型與不同表徵之間的交互作用,幫助學生觀察並進一步瞭解現象中所蘊含的科學模型,藉以動態修正或精緻化個人的心智模式。 關鍵詞:多重表徵的模型教學、心智模式的演變途徑、概念改變Item 建模教學的課室分析與學生概念改變--以晶體與分子間作用力為例(2016) 鍾曉蘭; Chung, Shiao-Lan模型(Model)與建模(Modeling)是科學發展的重要元素,也是科學學習中不可或缺的認知與能力,本研究探究在實施建模教學前,教師設計教學的歷程;評估建模與模型教學活動對學生學習的影響,以及學生在學習過程中概念改變的歷程;探索不同的課室活動中,教師的教學模式與學生學習成效、概念改變之間的關係。本研究以三種不同的課室教學活動(建模與多重表徵模型教學組、建模組、對照組),探討高三學生在學習晶體與分子間引力相關概念的過程中對於晶體與分子間作用力的相關概念、晶體模型的想法、建模能力與解釋能力四個面向的概念改變情形。研究對象為新北市某公立高中高三自然組學生共計108位學生,三組皆進行為期二週(10節課)的教學活動。分析資料來源分為教學錄影帶(課室分析)與紙筆測驗兩大類型,紙筆測驗又細分為晶體模型問卷、形成性評量與學習問卷三大部分。主要研究結果彙整如下: 1. 三組經過五節課的教學後,教學中測驗的結果為概念方面進步最多,解釋方面進步最少,僅對照組建模能力略微退步。三組的中測以前測為共變數進行ANCOVA test,以LSD進行事後考驗,考驗結果皆達顯著差異。概念方面顯著性考驗結果為F(2, 106)= 11.46, p=.000;解釋方面顯著性考驗結果為F(2, 106)=11.20, p=.000;建模能力方面顯著性考驗結果為F(2, 106)=19.42, p=.000;整體表現顯著性考驗結果為F(2, 106)=24.59, p=.000。概念、建模能力與整體表現皆為建模與多重表徵模型教學組顯著優於建模組,建模組顯著優於對照組。解釋方面則為兩組實驗組之間無顯著差異,兩組實驗組皆顯著優於對照組。 2. 經過十節課的教學後,三組仍持續進步,進步幅度增加,但在解釋方面待加強。三組的後測以前測為共變數進行ANCOVA test,以LSD進行事後考驗,考驗結果皆達顯著差異。概念方面顯著性考驗結果為F(2, 106)=21.50, p=.000;解釋方面顯著性考驗結果為F(2, 106)=20.06, p=.000;建模能力方面顯著性考驗結果為F(2, 106)=24.87, p=.000;整體表現顯著性考驗結果為F(2, 106)= 28.29, p=.000。概念、解釋、建模能力與整體表現皆為建模與多重表徵模型教學組顯著優於建模組,建模組顯著優於對照組。結果顯示同時使用建模與多重表徵模型活動更有助於複雜科學概念的理解。 3. 三組學生經教學後對於模型本體、模型表徵、模型功用與建模歷程的想法多半呈現正向的提升,特別是模型功用與建模歷程的同意度呈現高度同意,但三組後對於數學關係式能表徵晶體模型與量化關係來分析晶體模型的正確性同意度仍偏低。 4. 兩組實驗組學生認為建模歷程的教學活動有助於概念的理解與解決問題能力的提升,對於具體模型活動則持高度正向的同意度。 本研究建議科學教師在課室活動中可以採用建模與多重表徵的模型教學,並透過課室師生的討論活動,幫助學生藉由不同表徵的模型與建模歷程,以系統性的方式學習抽象而複雜的科學概念。