學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912
Browse
2 results
Search Results
Item 結合韻律特徵與聲學特徵於錯誤發音檢測與診斷之研究(2019) 林奕儒; Lin, Yi-Ju本論文探討韻律特徵應用多任務深層網路模型於錯誤發音檢測及診斷(mispronunciation detection and diagnosis, MDD)之研究。電腦輔助發音訓練(computer assisted pronunciation training, CAPT)之目的在於透過電腦自動地指正外語學習者的發音問題;其在程序上大致可分為錯誤發音檢測(mispronunciation detection)與錯誤發音診斷(mispronunciation diagnosis)等兩個階段。本論文主要探討 1.)韻律特徵與聲學特徵結合後對於錯誤發音檢測與診斷的幫助。 2.)希望利用多任務深層網路模型解決資料正例反例不平衡之問題。 3.)結合基於相似度的評分(likelihood-based scoring,GOP)以及基於分類器評分(classification-based scoring)的方法達到更好的檢測結果以及診斷結果。 實驗結果顯示,聲學特徵對於錯誤發音檢測任務較有幫助;而韻律特徵對錯誤發音診斷任務有較好的助益。Item 錯誤發音檢測使用評估尺度相關訓練準則(2016) 許曜麒; Hsu, Yao-Chi錯誤發音檢測(mispronunciation detection)與錯誤發音診斷(mispronunciation diagnosis)為電腦輔助發音訓練系統的一部分,它們能輔助第二外語學習者準確地找出語句中錯誤發音的部位以增進學習者的口說熟練度。本論文延續過去學者的研究,大致可將貢獻分為三點:1) 我們透過最佳化評估尺度相關訓練法則估測深層類神經網路聲學模型的參數以及發音檢測決策函數之參數。2) 可以發現聲學模型經過我們的方法訓練後,後續的錯誤發音診斷任務之效能也得到改善。3) 我們將錯誤發音診斷視為分類任務,並利用過去學者所提出的蘊含豐富資訊之特徵以提升錯誤發音診斷的效果。一系列的實驗將建立在華語錯誤發音檢測與診斷任務,從實驗中可以觀察到我們提出的方法之優點。