學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912
Browse
3 results
Search Results
Item 基於背景模型的姿勢判斷系統(2011) 李振遠; Chen Yuan Lee姿勢辨識在電腦視覺領域中,特別是針對人體部分是項越來越重要的議題,涵蓋的範圍可分為:手部與手臂的姿勢辨識、頭部與臉部姿勢辨識、整個身體姿勢辨識等種類。在姿勢辨識的問題中,一個很大的瓶頸在於如何在複雜環境下取得所需要的特徵資訊,並且選擇適當的方法將這些資訊完成姿勢辨識。本論文主要目標是在真實的教室裡並且只有一台攝影機拍攝下,能即時(real-time)辨識出講者的手臂姿勢來達到控制投影片的效果,所提出的方法能讓講者在教室投影機照射下,穩定並不受投影機照射並且背景隨著投影片的換頁變化影響下抓取需要的資訊來進行辨識。本論文使用高斯混合背景模(Mixture of Gaussian background model)來擷取出前景(foreground)的輪廓(silhouette)影像,並使用連通元(connected component)將前景輪廓的特徵資訊截取出來,並套入支持向量機(Support Vector Machine,SVM)對手臂動作進行分類。此外,搭配人臉偵測(face detection)方法能分辨出左右手,達到不同手部動作來控制投影片的效果。Item 適用於陪伴型機器人與被陪伴者間互動之視覺式人體動作辨識系統(2017) 曾雯琳; Tseng, Wen-Lin近年家用陪伴型機器人銷售量逐漸增加,而且價格也有逐漸降低的趨勢,愈來愈多家庭能夠負擔家用陪伴型機器人的費用。而家用陪伴型機器人主要功能為協助家人或照護者陪伴與照護幼童及年長者生活。家用陪伴型機器人可以從了解幼童及年長者的行為與狀態,做出適當的相對之回應,以達到互動、陪伴與照護之功能。本研究開發一套適用於陪伴型機器人與被陪伴者間互動之視覺式人體動作辨識系統,能夠自動辨識被陪伴者之動作,達到陪伴與照護之效果。 本系統開始時將讀入連續深度影像及連續彩色影像,接著判斷是否有人物在影像中,再利用深度影像建立depth motion map及彩色影像建立color motion map。將depth motion map與color motion map分別得到的影像合併成一張影像,將此影像擷取方向梯度直方圖(HOG)作為人體動作辨識系統之特徵。最後將這些特徵輸入SVM進行分類,得到人體動作辨識之結果。 本研究的人體動作辨識共分8種動作,分別為揮右手、揮左手、握右手、握左手、擁抱、鞠躬、走路及拳擊。Database1實驗資料由5位實驗者拍攝影片,每位實驗者分別拍攝8個動作,每個動作各執行20次,共有800部影片,其中以640部影片做為訓練集,另以160部影片做為測試集。由實驗結果可得知,本系統之人體動作辨識正確率為88.7%。Database2實驗資料由1位實驗者拍攝影片,其中實驗者為12歲之孩童,共有320部影片,皆作為測試集,實驗結果得知此人體動作辨識正確率為74.37%。Database3實驗資料為機器人移動時拍攝人體動作,由4位實驗者拍攝影片,共有320部影片,其中以160部影片作為訓練集,另以160部影片作為測試集,實驗結果得知人體動作辨識正確率為51.25%。此可知本系統的辨識結果具有一定可信度。Item 應用可讀性預測於中小學國語文教科書及優良課外讀物分類之研究(2016) 劉憶年; Liu, Yi-Nian可讀性(Readability)是指閱讀材料能夠被讀者理解的程度。可讀性高的文章較容易被讀者理解。文章的可讀性與很多因素有關,如:文長、字詞難度、句法結構、內容是否符合讀者的先備知識等,然而表淺的語言特徵無法反映這些複雜的成分。本論文以先前的研究為基礎,更深入的探討不同種類的特徵,包括句法分析(Syntactic Analysis)、詞性標記(Part-of-Speech, POS)、詞表示法(Word Embedding)、語意資訊(Semantic Information)與寫作程度(Well-written)等特徵,分析比對不同類型的特徵與可讀性高低的關聯性。實驗資料分為二部分:其一為中小學國語文教科書,選自98年度台灣三大出版社所出版的1~9年級(共18冊)審定版國中小國語文教科書;其二為優良課外讀物,選自文化部歷屆「中小學生優良課外讀物」獲選書籍。本論文嘗試透過逐步迴歸與支持向量機等兩種方式建立可讀性模型,比較兩者之效能優劣;最後,再將兩者加以結合,以提升預測之正確率。實驗結果顯示,本論文所提出的可讀性特徵相較於傳統所使用的表淺特徵,在文本難易度評估的任務中,能有顯著的效能提升。