Skip to main content
Communities & Collections
All of DSpace
Statistics
English
العربية
বাংলা
Català
Čeština
Deutsch
Ελληνικά
Español
Suomi
Français
Gàidhlig
हिंदी
Magyar
Italiano
Қазақ
Latviešu
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Српски
Svenska
Türkçe
Yкраї́нська
Tiếng Việt
Log In
Log in
New user? Click here to register.
Have you forgotten your password?
Home
理學院
資訊工程學系
學位論文
學位論文
Permanent URI for this collection
http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912
Browse
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
1 results
Back to results
Filters
Author
1
search.filters.author.Shih, Chin-Hong
1
search.filters.author.石敬弘
Subject
search.filters.subject.Siamese Networkws
1
search.filters.subject.Deep Learning
1
search.filters.subject.Generative Adversarial Networks
1
search.filters.subject.Representation Learning
1
search.filters.subject.Text Categorization
Show more
Search subject
Submit
Browse subject tree
Date
Start
End
Submit
2017
1
Has files
1
Yes
Reset filters
Settings
Sort By
Accessioned Date Descending
Most Relevant
Title Ascending
Date Issued Descending
Results per page
1
5
10
20
40
60
80
100
Search
Subject: search.filters.subject.Siamese Networkws
×
Search Tools
Search Results
Now showing
1 - 1 of 1
No Thumbnail Available
Item
基於類神經之關聯詞向量表示於文本分類任務之研究
(
2017
)
石敬弘
;
Shih, Chin-Hong
Show more
由於資訊網路的蓬勃發展,人們在物聯網上存取文本資料的需求也與日俱增,因此文本分類在自然語言處理的領域中的應用為相當熱門的研究。目前,在文本分類中最為核心的問題為特徵表示的選擇,大部分的研究使用詞袋(Bag of words)模型做為文本的特徵表示,但詞袋模型無法有效的表達詞與詞之間的關係,進而失去了文本上的語意。 在本論文中,我們使用兩種新穎的類神經網路架構 : 連體網路(Siamese Nets)和生成式對抗網路(Generative Adversarial Nets), 在訓練過程中使模型能學習更為強健且帶有豐富語意的特徵表示。本論文實驗採用知名的分類資料庫,IMDB電影評論分類、20Newsgroups新聞群組分類,由一系列的情緒分析和主題分類的實驗結果顯示,藉由這些類神經網路所學習到的特徵表示可以有效地提昇文本分類的效能。
Show more