學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912
Browse
3 results
Search Results
Item LSTM 法則應用於連續手勢辨識之研究──手勢辨識系統軟體與硬體於 FPGA 實作(2020) 鄧凱中; Teng, Kai-Chung本論文考量現實應用的方便性與實際應用,選擇現場可程式邏輯門陣列(Field Programmable Gate Array, FPGA)來硬體電路實現,並對電路運算單元參數化,以應變需求的變化。而演算法使用長短期記憶(Long Short-Term Memory,LSTM) [1]來訓練模型與手勢辨識。 LSTM 作為設計電路之模型,跟傳統遞歸神經網路(Recurrent Neural Networks, RNN) [2]不同的是,RNN 同一時間點 t 的輸入都在同一層面,將上一層的輸出當作下一層的輸入,但時間點 t 產生的梯度在往後傳遞幾層後就消失為一大難題。而 LSTM 使用 Input Gate、Output Gate 與 Forget Gate 三個控制閘成功的解決時間軸上梯度消失的問題,因此選擇 LSTM 為本論文的演算法則。 LSTM 模型以 Keras [3]平台來訓練與驗證,辨識率高達 98%。本論文的訓練與辨識資料庫使用擁有陀螺儀跟加速器的手機做為 Sensor 來收集手勢資料,並收集本實驗室多人的動作為資料庫,並對資料做圖形化來篩選優良的訓練資料。圖形或者影像辨識需要瞭解艱深且複雜的公式,還必須有能力編碼將公式實踐出來,對手勢的辨識如果使用傳統影像辨識的方法將會增加運算的時間、大量的運算資源消耗與記憶體儲存空間的需求。本論文分別使用手機陀螺儀與加速器的 X、Y、Z 軸數據為訓練資料,與傳統的影像辨識相比,差別為輸入資料每一筆的維度變成一維,節省硬體儲存資源與運算的複雜度。Item LSTM法則應用於連續手勢辨識之研究──訓練系統軟體及辨識系統FPGA之實作(2018) 廖振瑋; Liao, Zhen-Wei本論文用LSTM類神經網路模型來做連續手勢之訓練及辨識系統,並且以FPGA來完成手勢辨識系統之硬體化實現。 資料蒐集方面,我們使用智慧型手機取得其內部感應器中的三維加速度器及三維陀螺儀數值做為我們的訓練資料及辨識資料。訓練及辨識方面,透過Keras平台對手機端蒐集的資料做訓練跟辨識,接著我們以C以及JAVA重建辨識系統,來協助此系統On-line及硬體化的實現。 辨識系統我們有著百分之九十八的辨識準確率,並且在完成的硬體電路有著低面積及低資源消耗。在高準確率跟低資源消耗的優點下,大大增加了本篇論文的應用性及實用性。例如可以與娛樂結合,讓玩家能透過感應器藉著手勢的揮舞做出移動或是攻擊的動作而不必透過按鈕,增加遊玩的真實感。Item