學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912
Browse
2 results
Search Results
Item 基於集成學習方法進行謠言偵測(2022) 陳煒鈞; Chen, Wei-Jiun網路社交媒體充斥著假消息,連牛津辭典在2016年都將"Post-Truth"列為一個詞彙,錯誤的資訊可能對人造成危害,所以建構一個能夠辨識網路上各種不一樣說法、消息的系統是一個重要的議題。本研究利用預訓練語言模型搭配文字以外的特徵建立出一套辨識謠言的系統,辨識在社交媒體Twitter及Reddit使用者發表內容的真偽。 本論文的資料集來自SemEval 2019 RumourEval: Determining rumour veracity and support for rumours (SemEval 2019 Task 7)的任務B,該任務將Twitter及Reddit上的句子經由人工標註分為3類,真(True)、假(False)、未驗證(Unverified),本研究先經由資料增強的方式增加資料量,接著以不同的語言模型(RoBERTa、ALBERT)及傳統分類(SVM)個別進行訓練,再將不同的模型組合進行集成學習(Ensemble Learning),訓練並給予不同的權重,最後加上後處理達到Marco F1 72 %,RMSE 0.5879的成績。Item 使用加上額外特徵的語言模型進行謠言偵測(2021) 陳信睿; Chen, Xin-Rui本篇論文提出一個強健語言模型加上額外特徵的系統,處理SemEval 2019RumourEval: Determining rumour veracity and support for rumours (SemEval2019 Task 7),主要包含了兩個任務,任務A 為 使用者的立場偵測,任務B偵測謠言是真、假或未驗證, 本研究利用到了對話分支的追蹤資訊,使用強健的預訓練語言模型與詞頻特徵,加上報導其他特徵的深度學習預訓練模型,結合兩者的預測結果,做出任務A的立場驗證,其Macro F1達到62%,再透過規則模型處理任務B的消息驗證,達到 Macro F1 68%,且 RSME降到0.5983。