學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    多口音英語語音辨識
    (2024) 鄭皓天; Cheng, Hao-Tien
    隨著全球化的趨勢,英語作為國際通用語言的角色日益重要。然而,由於母語背景、地區和文化差異的影響,英語口音的多樣性也相應增加。這使得語音辨識系統在識別各種口音的英語時面臨著挑戰。本論文探討針對在有限口音語料的狀況下如何通過增加口音鑑別力來改進Conformer模型對於多口音英語語音的辨識效果。本論文提出了一種方法將口音分類任務加入語音辨識模型中,旨在提高模型對於不同口音的敏感性和鑑別能力。實驗結果顯示,與傳統的語音辨識方法相比,此方法在口音英語語音辨識的詞錯率有下降,並且也將模型編碼器中不同層的口音特徵視覺化來進行分析,探討模型在不同層的特徵所代表的訊息。另外,本論也探討了利用大量資料訓練的Whisper模型在英語版、多語言版本以及不同模型大小的設定下對於多口音英語語音辨識任務的效果,也比較了使用LoRA的方式來訓練模型與全面微調方式的差異,為模型的選擇提供了一個更明確的參考。
  • Item
    視覺化診斷中文實體辨識系統
    (2021) 羅珮珊; Lo, Pei-Shan
    實體辨識是讓機器了解自然語言的關鍵任務,目標是擷取文本中具有特定意義的文字區塊,例如組織名、人名、地名、時間等等。現今,深度學習模型透過捕捉文本的上下文特徵,可以自動找出文本中的實體,在自然語言的領域中,獲得很大的進步,然而,深度學習複雜的模型結構,導致專家難以理解模型決策背後的原因,形成黑盒子的問題,限制研究人員研究及改進模型的能力。相較於英文,中文文本 (或其他語言,如韓語和日語) 詞與詞之間沒有有明確的邊界,執行中文自然語言的任務前,需要經過基本的語言任務,例如斷詞和詞性標註,以利分辨文本中的詞義,才能進行其他的自然語言任務的預測。因此,中文實體辨識除了存在深度學習模型黑盒子的問題,斷詞與詞性標註的正確性也影響預測結果,導致分析中文實體辨識的決策,變得更加複雜。 我們提出視覺化的分析工具,讓使用者可以透過互動的方式檢查斷詞、詞性與實體辨識預測之間的關係,並探索深度學習模型的內部決策過程。此外,我們的系統允許使用者載入大量的測試資料,並協助使用者從大量的數據中探索,找出關鍵實例進行追蹤及分析,且透過實例證明我們系統可用性及有效性。