學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    以深度學習為基礎之視覺式行人危及行車安全程度評估系統
    (2021) 曾永權; Tseng, Yung-Chuan
    交通工具的進步使往返各地越來越方便,但也帶來許多交通事故。根據台灣內政部統計年報[4]統計,諸多交通事故造成台灣每年數十萬人傷亡,其中又以道路上弱勢行人受到的傷害為大。故本研究提出以深度學習為基礎之視覺式行人危及行車安全程度評估系統。該系統利用行車紀錄器影片作為輸入,用於主動式安全駕駛輔助,辨識行人危及行車安全程度,提前警告駕駛注意行人,希望能藉此降低車禍事故發生。本研究首先對行人危及行車安全程度進行分析以及定義,將行人危及行車安全程度依據行人與攝影機距離、行人在影像中位置、行人面朝方位、行人是否移動、是否逆光5種條件分為14種情況,並將這14種情況對應到安全、低危險、中危險、高危險共4種類別。之後,本系統使用YOLOv4類神經網路模型作為骨架,進行YOLOv4的組合測試,並以前、後處理的方式進行改良。本研究最終提出Single YOLOv4、Two-stage Training YOLOv4以及Parallel YOLOv4三種流程。Single YOLOv4直接以行人危及行車安全程度進行訓練,預測時加入後處理方法刪除過度重疊的預測框。Two-stage Training YOLOv4先針對影像中「人」進行訓練,再利用此權重學習行人危及行車安全程度,預測時利用第二階段學習到的權重進行預測並刪除過度重疊的預測框。Parallel YOLOv4訓練及測試時採用兩個YOLOv4,一YOLOv4以「人」進行訓練,一YOLOv4以行人危及行車安全程度進行訓練,預測時將兩個YOLOv4各自過度重疊的預測框刪除後合併預測結果。本研究使用的測試資料庫之影片皆為作者親自拍攝,拍攝地區為新北市中永和地區,命名為Pedestrian-Endanger-Driving-Safety Evaluation Dataset。本研究所開發的行人危及行車安全程度系統將輸出一段影片,影片中含有行人的預測框,預測框上方有預測之危及行車安全程度,並根據4種不同危及行車安全類別,給予每個預測框不同顏色,用於區分危及行車安全程度。本系統以F1-measure作為正確率評估方式,最終獲得71.2%的正確率。
  • Item
    使用馬可夫鏈蒙地卡羅方法之多方位行人偵測
    (2010) 廖婉雅; Wan-Ya Liao
    本論文研究多方位行人偵測的技術,攝影機可以不受架設位置與觀測角度的限制偵測行人。為了要掌握行人於影像中呈現各種不同的型態,我們提出一個多視角(multiple-view)的單位球(unit sphere)來描述行人,稱此單位球為viewsphere,它是由多個巢狀球面所組成,每一層球面均勻分佈許多視點(viewpoints)。我們將一3D行人模型置於球體中心,然後將行人模型投影至每一視點所屬的影像平面,因此可以取得各種不同觀測角度的行人外觀,稱為model views。 本研究首先建立一3D行人模型,此行人模型是由行人頭部和肩膀所組成的上半身,因為上半身的輪廓形成”Ω”形狀,為行人獨有的特徵,即使在擁擠的人群中,這個輪廓也不易消失。利用此輪廓資訊再搭配頭髮的髮色、臉部的膚色和所占區域的面積比資訊,可以於影像中找出行人的位置,即使行人發生遮蔽情況也可成功標示出行人的位置和計算行人的數目。由於行人狀態的解空間很龐大,我們利用馬可夫鏈蒙地卡羅(Markov Chain Monte Carlo)的方法,在解空間中連續取樣,計算行人於影像中的後驗機率 (posterior probability) 分佈,再根據後驗機率分佈,決定出行人最佳狀態。由於馬可夫鏈蒙地卡羅收斂速度慢,因此我們設計三種不同的取樣策略,提升建立後驗機率的效率。 實驗時,在不同場景架設不同高度和不同攝影角度的攝影機,測試本研究所提出的技術。結果證明,可適應各種角度的監視影像,且行人發生遮蔽的情況下,也能正確找出行人位置。
  • Item
    基於粒子群聚演算法的多行人追蹤
    (2016) 李國輔; Lee, Kuo-Fu
    行人的偵測與追蹤是近年來相當重要的研究項目。一般常見的行人追蹤演算法大多是利用大量的運算時間來取得高準確率,或者是犧牲準確率而得到快速追蹤的結果。直至目前為止,尚未有快速且準確的演算法來偵測追蹤移動中的行人。因此,本論文採用運算速度更為快速的粒子群聚(Particle Swarm Optimization, PSO)演算法搭配色彩直方圖 (Color Histogram) 做為擷取影像特徵方法,以達到速度與準確率的最佳平衡。本研究的方法共分成四個階段:首先利用Histogram of Oriented Gradient (HOG) 針對輸入影像進行「行人偵測」找出行人位置,其次對該影像進行「影像前處理」來降低光影的影響,接著計算影像的色彩直方圖進行特徵距離相似度計算,最後套用至PSO演算法的適應函數進行行人追蹤。本研究的實驗從七大影像資料庫中選取不同的移動方式的影像 (如左右橫向移動、畫面上隨機移動及深度的移動等) 來驗證PSO演算法的速度與準確率。結果顯示,在花費較少時間計算的情況之下 (0.0784 ~ 0.0906 s) ,PSO演算法可達到與其他演算法一樣甚至較高的準確率 (Multiple Object Tracking Accuracy,MOTA:69.88 ~ 86.54%;Multiple Object Tracking Precision,MOTP:77.43 ~ 84.76%) 。若影像資料沒有受到部分或全部遮蔽的干擾,PSO演算法的追蹤準確率可維持在80% 以上。研究結果證實與現有的演算法相比,PSO演算法不僅大幅縮短了演算時間,更展現優異的追蹤準確率,顯示此演算法可達到速度與準確率的最佳平衡。未來研究將繼續改良現有的PSO演算法,以提升分析部分或全部遮蔽影像的準確率。