學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912
Browse
3 results
Search Results
Item 以Kernel為基礎之模糊分群演算法硬體架構實現(2012) 歐浩聲; Ou, Hao-Sheng本論文根據文獻[12]以及文獻[17],以此兩則文獻中提到的FCM-SC分群演算法的硬體架構和KFCM演算法的硬體架構為基礎,實作以非線性高斯核函式為核距離計算之KFCM[12] 再加上空間資訊[17] 後的分群演算法硬體電路,具有管線化以及可以同時計算所有分群之權重係數的能力。此架構改良了以往KFCM分群演算法對於有雜訊的資料做分群的問題,並且配合KFCM本身可以對非線性資料分群效果較好的能力,所以能夠廣泛地使用在許多的分群資料上,並且都有良好的辨識率。本論文使用FPGA實現我們提出的硬體架構,並使用人工雜訊圖片作為實驗測試資料。實驗結果顯示本架構對於有雜訊的非線性資料分群效果確實較KFCM佳,且架構簡單提供了日後高度的延伸性。Item 基於RBF實現紋理辨識之硬體架構(2012) 范哲誠; Zhe-Cheng Fan本論文提出以Recursive Least Mean Square為基礎,結合Fuzzy c-Means分群演算法實作出Radial Basis Function類神經網路之紋理圖辨識系統。在本論文中,Fuzzy c-Means計算紋理圖的質量中心點,Recursive Least Mean Square計算類神經網中的權重係數,希望利用硬體的特性來實現快速運算、低資源消耗、低功率消耗以及擁有良好的效能之硬體架構。 最後我們所提出的硬體架構會在以FPGA為基礎的可程式化系統晶片設計(System On a Programmable Chip,SOPC)之平台上作實際的效能測試。根據使用不同的紋理圖作為測試資料,實驗結果顯示本架構對於紋理圖辨識有良好的分類正確率,且此硬體架構提供了日後高度的延伸性。Item Kernel-Based Fuzzy c-Means分群演算法 硬體架構實現(2011) 楊斯閔; Yang Ssu-Min本論文根據文獻[6],以其FCM分群演算法的硬體架構為基礎,實作以非線性高斯核函式為核距離計算之KFCM分群演算法硬體電路,具有管線化以及可以同時計算所有分群之權重係數的能力。此架構改良了以往FCM分群演算法對於非線性資料分群效果不佳的問題,並且能夠應用在帶有雜訊的資料。本論文使用FPGA實現我們提出的硬體架構,並使用Iris data與人工雜訊圖片作為實驗測詴資料。實驗結果顯示本架構對於非線性資料分群效果確實較FCM佳,且架構簡單提供了日後高度的延伸性。