學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912
Browse
3 results
Search Results
Item 求解多極值連續型最佳化問題之演化演算法設計(2023) 黃敬庭; Huang, Jing-Ting多極值連續型最佳化問題需要在決策空間中找出數個相異的全域最佳解,許多現實問題皆是多極值問題,如:桁架 (truss) 結構最佳化、藥物分子設計及工廠排程問題等,在此類問題中找到相異的全域最佳解可以幫助決策者了解問題背後隱藏的因素,或是提供備選方案以備不時之需。近幾年演化演算法逐漸成為解最佳化問題的主流演算法,此類方法利用解個體之間彼此交換資訊、產生新的解個體以此來使族群逐漸往全域最佳解收斂,但收斂意味者族群多樣性喪失或陷入區域最佳解而無法找出其它潛力解,因此如何避免收斂並維持族群多樣性以搜尋不同的區域,是利用演化演算法解多極值最佳化問題的其中一項重要議題。本論文提出了使用混合利基法之潛力區域探索演算法框架 (Promising Area Exploration based on Hybrid Niching, PAEHN),探討如何將主要族群分為多個子族群以搜尋解空間中的相異區域。在演化過程中記錄潛力解區域,當子族群都已收斂或停滯時,在潛力解區域附近重新產生主要族群以搜尋更多最佳解。此框架可套用不同的演化演算法進行演化,本論文使用 SHADE 作為基底演算法,SHADE 為自適應參數控制的差分演算法且已被證實於連續型單目標最佳化問題具有良好的效率。實驗結果得知 PAEHN 在容許誤差小的情況下具有良好的競爭力;而在容許誤差大的情況下具有相當強的優勢,於 20 個測試問題中有 18 個問題可以找出所有的全域最佳解,且 PAEHN 不需要使用問題的任何先備知識。Item 適應性差分演化演算法之軟體框架設計(2015) 陳麒安; CHEN, Chi-An差分演化演算法在解連續型實係數的問題上,有不錯的能力,各式各樣的突變策略以及不同的參數值 F 與 CR,會改變差分演化演算法的效能。 參數有多種產生的方法,可能是固定的,也可能是動態的,並且希望透過一個軟體方便地控制它們,但是,目前並沒有一個軟體能讓想要研究它們的使用者操作,因此,本論文開發出支援多種參數控制的軟體框架,並且探討實作適應性差分演化演算法之軟體框架需要考慮的設計議題以及其解決辦法。 本論文提出的軟體框架支援數種適應性差分演化演算法,能夠自由修改參數、彈性更換參數控制機制,以及自動分析實驗結果,可以大幅減少使用者撰寫程式的時間,增進研究效率。Item 應用適應性多目標差分演化演算法求解電力調度之成本與污染最佳化問題(2018) 林中儀; Lin, Zhong-Yi生活在21世紀的人類生活已經不能沒有電力,而目前的台灣也飽受空氣汙染的影響,電力調度之成本與污染最佳化問題探討的是如何分配機組的發電量以達到用最少成本與最低的汙染氣體排放量來提供所需之電力,在綠能還不穩定且核能無法得到共識的現在,火力發電為主流的國家都會面臨這個問題。 本研究利用差分演化演算法搭配多目標框架MOEA/D嘗試解決這個問題,在所做的實驗中探討各種參數與策略的效果,試著找出最佳的設定。既有論文在比較其提出方法之優劣時多半未採用多目標演算法領域常用的指標,本研究會利用多目標演算法常用的效能指標來評估好壞並且釋出完整的求解資料以供後面的研究者可以進行比較。