學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912
Browse
2 results
Search Results
Item 通用於第一人稱射擊遊戲外掛檢測機制之研究(2022) 陳逸文; Chen, Yi-Wen隨著科技的飛速發展,玩家可以在一台個人電腦上遊玩各種類型的遊戲,在各類型遊戲中,網路遊戲是大多數玩家最喜愛的遊戲類型,玩家為了在網路遊戲中獲得更好的成就,開始使用外掛程式達成個人無法實現的目標,基於上訴原因,作弊偵測成為了遊戲廠商的重大課題。本研究提出了一種基於影像辨識並以數據檢測輔助的作弊檢測系統,並分別使用VGG16、ResNet50、MobileNet V2、Xception和Inception v3 對誠實玩家和作弊玩家的瞄準軌跡進行檢測,研究結果表明,Inception V3 能最準確的分辨誠實玩家與作弊玩家。Item 以智慧椅墊進行坐姿分析之研究(2019) 張雅婷; Chang, Ya-Ting在現代社會中,大部分人的生活型態,不論是工作或者休息,往往有很長的時間維 持坐姿。近年來有越來越多的疾病被證實與久坐有關。許多人認為坐姿是種休息的姿 勢,但研究中指出,比起站姿與躺姿,坐姿讓椎間盤承受的壓力更大,而不適當的坐 姿則更提升了椎間盤的壓力。 由於久坐逐漸成為現代人的生活習慣,所以適當的坐姿就顯得格外的重要。在日常 生活中,不適當的坐姿對於大多數的人而言,屬於較為舒適的姿勢,所以往往無心注 意自己的坐姿是否適當。故須透過工具協助來了解自己的坐姿情況。本研究設計一智 慧椅墊之雛形,旨在透過較低的成本 Arduino開發版與少量的壓力感測器,並且準確 的分類使用者的坐姿。 過去使用壓力感測器進行坐姿分類的相關研究中,透過傳統的機器學習方法進行坐 姿的分類,且使用較多數量的感器收集各類坐姿的資料。準確率落在百分之八十至百 分之九十。本研究使用一種傳統機器學習演算法與兩種深度學習之方法進行實驗,找 出適合進行坐姿分類之方式,並以特徵選擇實驗找到能夠準確分類坐姿之感測器數量 及擺放方式。 本研究除了使用限制坐姿使用資料進行坐姿分類模型訓練以及評估初步的分類結 果,並透過實際座椅使用情況資料,再次檢視此智慧椅墊在實際使用情形下,亦能有 良好的做姿分類表現。透過智慧椅墊設計實驗與特徵選擇實驗,本研究完成一智慧椅 墊,使用少量的感測器與基礎的物聯網開發板,降低了硬體成本,達成良好的坐姿分 類表現。