學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    語音增益之研究 — 適應性與可解釋性
    (2024) 何冠勳; Ho, Kuan-Hsun
    本論文深入探討語音增益(SE)領域,這是一個通過減少噪音和失真來精煉語音信號的關鍵過程。借助深度神經網絡(DNNs),本研究解決了兩個基本挑戰:1)探索SE和自動語音辨識(ASR)系統之間的兼容性,以及2)增強基於DNN的SE模型的可解釋性。動機來源於SE模型可能在運作中引入的偽影(Artifacts),可能危及ASR性能,因此需要重新評估學習目標。為應對這一問題,提出了一種新穎的噪聲和偽影感知損失函數(NAaLoss),它在保持SE質量的同時,顯著提高了ASR性能。另外,在基於DNN的SE方法中,我們探索了一種新穎的設計,即基於Sinc的卷積(Sinc-conv),以在解釋性和時域方法的學習自由之間取得平衡。基於此,我們設計了重塑的Sinc卷積(rSinc-conv),不僅提升了SE的最新技術水平,還揭示了神經網絡在SE期間優先考慮的特定頻率組合。這項研究做出了實質性的貢獻,包括定義1)SE中的處理偽影,展示NAaLoss的有效性,通過視覺化偽影獲取洞見,並填補SE和ASR目標之間的差距。2)為SE量身定制的rSinc-conv的開發在訓練效率、濾波器多樣性和可解釋性方面提供了優勢。3)解析神經網絡的優先關注,對不同形狀濾波器的探索以及對各種SE模型的評估進一步促進了我們對SE網絡的理解和改進。總的來說,這項研究旨在為SE領域的討論做出貢獻,並為在現實情境中實現更強大和高效的SE鋪平技術道路。
  • Item
    即時單通道語音增強技術之研究
    (2022) 曹又升; Tsao, Yu-Sheng
    隨著深度學習的發展,語音增強 (Speech Enhancement) 技術更能在各種不同的噪音環境下發揮效果。本論文針對語音增強的兩個子議題進行研究,分別是對於語音辨識 (Speech Recognition) 系統的語音增強前端預處理 (Front-end Preprocessing),以及線上 (On-line) 的串流式即時語音增強。語音增強研究首要目標是提升感知品質 (Perceptual Quality),然而若將最大化感知品質的模型用於預處理,可能會影響下游任務所依賴的聲學特徵,這樣的失真會導致效果不如預期,甚至衰退。而除了維持聲學特徵外,本論文也探討如何更有效的使用頻譜資訊,以及針對即時語音增強模型提高運算效率。  本論文在兩個方法上各自提出了改進,第一項為 DCT-TENET,以時序反轉增強網路 (Time-reversal Enhancement NETwork, TENET) 為基礎,針對語音增強的訓練流程調整,在保有一定增強效果的前提上,作為語音辨識前端處理機制也能更有效的提升辨識率,並且減少額外訓練聲學模型的需求。第二項為可調適性全次頻帶融合網路 (Adaptive-FSN),透過延伸「次頻帶能有效處理局部樣態 (Local Pattern)」的概念,提出一個可調適性次頻帶機制,壓縮大範圍相鄰頻帶之有效資訊來提高語音品質,並搭配其他改進以提高運算的效能。我們使用 VoiceBank-DEMAND 資料集對兩個方法進行實驗,改進後的 DCT-TENET相較 TENET 模型,能進一步的提升語音辨識系統於受噪語音的辨識率。使用乾淨情境聲學模型辨識 DEMAND 噪音之測試集降低相對約 7.9% 的詞錯誤率,使用多情境聲學模型於額外的未見噪音測試集也能降低相對約 10.6% 的詞錯誤率。另一部分,Adaptive-FSN 也相較基礎的 FullSubNet+,在語音品質指標上有更佳的表現,於 CPU 上運算則能有效的降低相對 44% 的實時率 (Real-time Factor)。