學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912
Browse
2 results
Search Results
Item 基於高斯混合模型之課堂舉手辨識研究(2012) 蔡承軒人體姿勢辨識技術是一項熱門的研究議題,在過去利用影像處理來辨識人體姿勢的辨識系統已經發展一段時間,在學術領域或專業應用上使用這類的辨識系統需要龐大的運算量以及昂貴的設備,使得這類的系統無法普及於一般大眾使用。 因此,在這篇論文中本研究經由偵測與辨識學生舉手的動作設計了一套即時 互動或應用的系統。在假設已知上半身範圍的情況下再針對這個範圍採用連續影像差異法 (temporal differencing),利用時間上連續的影像做一對一的像素相減,得到一個移動物件的影像,此影像再透過高斯混合模型 (Gaussian Mixture Model),利用多個高斯函數來描述反覆出現的多種背景值,並透過函數參數值的調適,以適應光線所產生的變化,此目的是為了在複雜的環境中擷取前景 (foreground) 的影像,並使用尺度不變特徵轉換 (Scale-invariant feature transform,SIFT) 擷取特徵,將擷取到的特徵套入支持向量機 (Support Vector Machine,SVM) 對姿勢動作進行辨識。發展此系統的目的在於可以使用方便取得的器材來取代昂貴的設備,使得人體姿勢辨識可以普及於一般大眾所使用。Item 基於軌跡辨識技術之人體姿勢自定與分辨研究(2012) 周敬恩; Chou,Ching-En鍵盤、滑鼠,是操作電腦不可或缺的設備,而隨著時代的進步,輸入設備不再侷限在此之上,如眼動儀的使用,運用眼球追蹤技術來控制滑鼠;語音輸入、辨識系統,能使較不熟悉鍵盤操作的使用者,能夠利用語音輸入設備達到打字的效果;觸控螢幕,讓手機、電腦的操作在手指滑動間即可達成,這些科技的發明,都讓電腦的操作更為人性化。而本研究係使用的微軟Kinect做為輸入端,讓使用者能自行輸入姿勢後再經本系統進行辨識,讓使用者以最直覺且習慣的方式操作電腦。本系統係以軌跡辨識為基礎,收集Kinect所提供的骨架資訊,再以決策樹的方式對使用者所輸入的姿勢進行儲存、分類與辨識,並在不造成使用者負擔的前提之下,以少量的事前訓練姿勢達到一定的辨識效果。