學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    資料選取方法於鑑別式聲學模型訓練之研究
    (2008) 朱芳輝; Fang-Hui, Chu
    本論文旨在研究使用各種訓練資料選取方法來改善以最小化音素錯誤為基礎的鑑別式聲學模型訓練,並應用於中文大詞彙連續語音辨識。首先,我們汲取Boosting演算法中強調被錯誤分類的訓練樣本之精神,修改最小化音素錯誤訓練中每一句訓練語句之統計值權重,以提高易傾向於被辨識錯誤的語句對於聲學模型訓練之貢獻。同時,我們透過多種方式來結合在不同訓練資料選取機制下所訓練出的多個聲學模型,進而降低語音辨識錯誤率。其次,我們亦提出一個基於訓練語句詞圖之期望音素正確率(Expected Phone Accuracy)定義域上的訓練資料選取方法,分別藉由在語句與音素段落兩種不同單位上的訓練資料選取,以提供最小化音素錯誤訓練更具鑑別資訊的訓練樣本。再者,我們嘗試結合本論文所提出的訓練資料選取方法及前人所提出以正規化熵值為基礎之音框層次訓練資料選取方法、以及音框音素正確率函數,冀以提升最小化音素錯誤訓練之成效。最後,本論文以公視新聞語料作為實驗平台,實驗結果初步驗證了本論文所提出方法之可行性。
  • Item
    英文初學者發音自動評分之研究
    (2015) 賴子婷; Lai, Tzu-Ting
    電腦輔助發音訓練(Computer Assisted Pronunciation Training,CAPT)是常用的一種語言學習方式,可以針對初學者的英文發音提供回饋讓初學者可以反覆的練習。本研究利用語音辨識以及字串相似度比對的技術,建置一個適合初學者英文發音的辨識模型用以輔助初學者發音練習。 本研究包含兩部分,第一部分為建置語音辨識模型,使用本研究自行錄製的JTES語料庫建置初始模型,再挑選JTJS中較優初學者的語音進行模型調適,作為整體的語音辨識模型;第二部分為評估是採用字串比對方式藉由本研究所提出的Levenshtein Distance-Like作為相似度計算且藉由cubic polynomial fit找到四個等級(好、尚可、待加強、重錄)的門檻值。 實驗結果呈現,當分成四個等級時人工評分與系統評分的正確率為75%,代表系統有一定的準確率,透過皮爾森係數得知人工評分與系統評分的相關性為0.71,呈現人工評分與系統評分是具有相關的,因此系統給予的回饋對於初學者是有一定的可信度,可以藉由此來提升口說技能。