學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912
Browse
2 results
Search Results
Item 在人工智慧物聯網應用中探討能源效率和即時性使用在模型訓練上(2021) 梅志碩; Mei, Chih-Shuo神經網絡模型訓練對於特定領域的人工智慧物聯網 (AIoT) 應用是必不可少的。通常顯示卡在模型訓練期間平均可能消耗數百瓦,而搭載 GPU 的嵌入式設備在出於相同的目的可能僅消耗幾瓦,但需要更長的訓練時間。在本論文中,使用了 NVIDIA RTX 2080 Ti 顯示卡和 NVIDIA Jetson Nano 嵌入式設備進行模型訓練的實證研究。將測量到的能量消耗和訓練時間,用以比較兩個平台之間的差異。結果表明,令人驚訝的是雖然使用 Jetson Nano 的訓練時間 比使用獨立顯示卡的訓練時間慢 30 倍,但 Jetson Nano 的總能耗實際上只有一半。結果表明,當考量能源消耗的重要性大於時間性的時候,可以選擇在搭載 GPU 的嵌入式設備上進行模型 訓練以達到節省能源的效果,反之則使用配有獨立顯示卡的電腦是更佳的選擇。在這些 AI 模型訓練中,像 Nvidia Jetson Nano 這樣的配備 GPU 的嵌入式設備可能在耗能方面具有更好的性能。此外,此論文也探討了關於 AIoT 用於預測性維護的案例研究,以說明配有 GPU 的嵌入式系統在模型訓練中的優勢。在實作預測性維護的案例研究中,也使用了 NASA 提供的渦輪引擎退化模擬資料集。而案例研究結果指出在時間性上的延遲是可以被接受的情況下,配備 GPU 的嵌入式裝置是可以有效的節省能源。Item 基於網宇實體系統整合的資料重用與工作替換(2021) 林政佑; Lin, Cheng-You一個多層次的系統需要整合伺服器和 IoT 設備,將 AI 應用整合到多層次系統中在現代是很有利的,而 AIoT 代表了在 IoT 設備中整合 GPU 進行 AI 計算,然而這會面臨幾個問題。首先,由於 AIoT 設備的規模限制,其設備也有計算限制。大多數 AI 算法都有巨大的重複性浮點數計算,以獲得基於機率的收斂近似解。GPU 使 AI 計算適合對大量的浮點數計算進行平行計算。其次,AIoT 設備還必須考慮工作的延遲要求,使 AIoT 設備控制的系統執行器在工作的關鍵事件中不會延遲,例如自動駕駛車輛中的剎車。第三,可以通過進一步整合邊緣伺服器、AIoT設備和現有的基礎設施來構建多層次系統,使數據重用具可行性且高效,多層次的 AIoT 系統在異質資源中會有更多的用途。本論文的貢獻是通過 CPS 概念將 IoT 平台計算和 AIoT 應用結合起來,然後探索 AIoT 設備在整合架構中的計算限制和解決方案,以實證方式來研究 AIoT 設備運行 AI 應用時適當的資源配置方法,在多層次系統中,不同的計算資源會導致不同的響應時間以滿足延遲要求。本論文的概念是數據重用,它來自於現有的基礎設施,並使用於新增加的 AIoT 設備,同時當代的 AIoT 設備配備的 GPU 對於AI 算法的局限性也是通過實證評估來衡量的。為了克服這些限制,本論文的架構提出工作替換和邊緣伺服器工作卸載的可行性。