學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912

Browse

Search Results

Now showing 1 - 10 of 24
  • Item
    Multiple Policy Value MCTS 結合 Population Based Training 加強連四棋程式
    (2024) 蔡宜憲; Tsai, Yi-Sian
    電腦對局是人工智慧在計算機科學和工程方面的最古老和最著名的應用之一,而AlphaZero在棋類對局領域是一個非常強大的強化學習算法。AlphaZero是用了MCTS與深度神經網路結合的演算法。較大的神經網路在準確評估方面具有優勢,較小的神經網路在成本和效能方面具有優勢,在有限的預算下必須兩者取得平衡。Multiple Policy Value Monte Carlo Tree Search此方法結合了多個不同大小的神經網路,並保留每個神經網路的優勢。本研究以Surag Nair先生在GitHub上的AlphaZero General程式做修改,加入Multiple Policy Value Monte Carlo Tree Search,並實現在連四棋遊戲上。另外在程式中使用了Multiprocessing來加快訓練速度。最後使用了Population Based Training的方式來尋找較佳的超參數。
  • Item
    利用啟發式法則與數種訓練策略來評估中國跳棋程式
    (2023) 江曛宇; Jiang, Syun-Yu
    中國跳棋(Chinese Checkers)是一個知名且充滿挑戰性的完全資訊遊戲。與一些其他的傳統遊戲如五子棋、圍棋不同,賽局樹的搜索空間並不會隨著遊戲的進行而越來越小。若是單純使用AlphaZero架構之演算法,在短時間內甚至難以訓練出初學者程度之程式。過去雖有使用蒙地卡羅樹搜索法結合深度學習與強化學習,並應用於中國跳棋上的演算法,但是仍有改進的空間。若是能夠適當的加入一些中國跳棋的先備知識,應該能使棋力進一步的提升。本研究針對中國跳棋設計數種策略,修改了前代程式Jump的設計,人為的增加先備知識,以期有更好的棋力,並且針對中國跳棋在神經網路訓練初期棋力很弱的問題,提出一連串的解決方案與策略,使其能夠在不使用人為訓練資料以及預訓練的狀況下,能夠獲得一定的棋力,並且對這些策略的特點進行探討,分析出各個策略的優缺點。
  • Item
    以深度學習對包含長文之資料集進行情感分析
    (2022) 陳宜威; Chen, I-Wei
    隨著網際網路的蓬勃發展,越來越多的訊息在社群網站、線上購物網站、論壇等各種網路平台間傳遞,而這一些訊息可能都表達了人們的看法或是評價。但是只依靠人力來觀察如此龐大的資訊量是非常沒有效率的,因此如何讓電腦得以代替人類完成這一項工作量龐大的任務是必要的。自然語言處理(Natural Language Processing,NLP)是一種讓電腦可以理解人類語言的技術,而情感分析(Sentiment Analysis)則是NLP其中的一項常見應用。它能夠了解字句間所表達的情緒,比如分析網路上對於某些產品、名人、事件等事物的評論立場為何,像是有好感還是持有負面態度。本實驗使用含有長文的IMDB資料集進行情感分析,該資料集將評論分為正面和負面,並且建立深度學習模型讓它藉由評論內容判斷評論表達的情緒是正面或負面,除了基本的LSTM和BERT模型以外,本實驗還有嘗詴讓BERT合併BERT或LSTM模型,希望藉由增加模型獲得的特徵來提高準確度,並且對各種模型的實驗結果進行比較。
  • Item
    利用樣本重組的半監督學習之場景文字偵測
    (2022) 葉家福; Yeh, Chia-Fu
    隨著科技的發展與進步,生活周遭所帶來的資訊越來越重要。在任何一個場景中,周遭的文字訊息都跟周圍的環境有著極高的相關性。若我們能自動偵測場景中的文字,以利後續的資料收集與分析,勢必能為生活帶來更多的方便性。場景文字偵測這項研究中,相關研究大多以英文為主。雖有少數工作研究簡體中文,但繁體中文幾乎沒有。而場景文字偵測為一般物件偵測中的一個特定應用,所以我們提出基於物件偵測的方法,應用在場景文字偵測上。而物件偵測方法大多使用監督式學習,其依賴大量的訓練樣本,但在真實世界中,標註樣本取得不易,所以聯合運用非標註樣本的半監督式學習方法,較符合真實世界的需求。本研究打造一個半監督式繁體中文場景文字偵測模型。透過交換具標註樣本的背景與文字來合成新樣本,並配合拼貼的資料增強方法,豐富訓練樣本的多樣性,實驗證明本論文提出的樣本重組能更有效地運用標註與未標註樣本。關鍵字:深度學習、物件偵測、場景文字偵測、半監督式學習。
  • Item
    基於集成學習方法進行謠言偵測
    (2022) 陳煒鈞; Chen, Wei-Jiun
    網路社交媒體充斥著假消息,連牛津辭典在2016年都將"Post-Truth"列為一個詞彙,錯誤的資訊可能對人造成危害,所以建構一個能夠辨識網路上各種不一樣說法、消息的系統是一個重要的議題。本研究利用預訓練語言模型搭配文字以外的特徵建立出一套辨識謠言的系統,辨識在社交媒體Twitter及Reddit使用者發表內容的真偽。 本論文的資料集來自SemEval 2019 RumourEval: Determining rumour veracity and support for rumours (SemEval 2019 Task 7)的任務B,該任務將Twitter及Reddit上的句子經由人工標註分為3類,真(True)、假(False)、未驗證(Unverified),本研究先經由資料增強的方式增加資料量,接著以不同的語言模型(RoBERTa、ALBERT)及傳統分類(SVM)個別進行訓練,再將不同的模型組合進行集成學習(Ensemble Learning),訓練並給予不同的權重,最後加上後處理達到Marco F1 72 %,RMSE 0.5879的成績。
  • Item
    Weakly Supervised Object Localization Using A Self-Training Approach
    (2023) 黃貞棠; Huang, Zhen-Tang
    近年物件定位與偵測在深度學習的研究上持續受到關注,許多物件定位的技術廣泛應用於我們的產業與生活中,為了達成可以在現實應用為目標,我們必須考量在現實應用中缺乏完整標註資料與標註成本的問題,且模型的準確率與泛化能力更是重要的指標。弱監督物件定位(Weakly supervised object localization)的研究,是在訓練集資料中缺乏位置級標籤,僅能使用圖像級標籤進行物件定位的工作。最近一個弱監督物件定位規範被提出,其包含一個具位置級標籤但少量的驗證集,供研究者調整超參以訓練出強健的定位模型。在本論文中,我們提出以半監督學習的技術應用於弱監督物件定位工作。我們獨立拆分定位模型與分類模型,可以解決少樣本的物件定位問題,並且避免分類影響定位的性能。我們提出的定位模型以半監督學習的方式進行訓練,首先使用非常少量有標籤的資料訓練定位模型,再利用其為未標註資料產生偽標籤。我們又提出一個偽標籤篩選演算法,從兩個不同的定位結果利用其互補特性,選擇高品質偽的標籤,並解決資料不平衡與樣本難易度差異的問題。最後我們將篩選後的偽標籤作為訓練資料再次訓練模型,配合使用訓練樣本預訓練的分類器進行分類與辨識。我們提出的方法可以有效利用弱標註的訓練資料,降低資料標註成本。我們所提出的方法不僅能有效提升模型的準確率,同時也將模型測試於不同的資料集中展現模型的泛化能力。
  • Item
    基於壓力感測器與深度學習之居家運動分析系統
    (2023) 李昱勳; Lee, Yu-Hsun
    2019年新型冠狀病毒的爆發,因其強大的傳播力,人們被迫待 在家中減少外出。運動中心與健身房等場所也容易因為汗水或是 近距離的接觸進而增加染疫的風險。然而大部分的使用者在沒有 教練的協助下,常常導致動作不夠標準或是缺乏系統性的訓練, 造成運動傷害以及成效有限。因此本研究提出 Home Exercise Analysis System Based on Pressure Sensor and Deep Learning,簡稱 為 HomeXDL。HomeXDL 運用壓力及壓力重心變化結合深度學習 來達到運動紀錄以及動作正確度偵測。 資料前處理後,HomeXDL 從 CoP 軌跡以及壓力變化計算出的 特徵值,運用決策樹進行動 作種類的分辨,在深蹲、硬舉及弓箭步的動作分類中,準確度 (Accuracy)達91%以上。動作正確度判斷上,HomeXDL 運用 CNN 對上述三個動作的正確度偵測。在系統有標記的動作問題上, HomeXDL 也皆能快速且精準的偵測出來,三個動作整體準確度 也達90%以上。最後 HomeXDL 的使用者介面能及時的回饋給使 用者其運動品質與動作錯誤原因,對使用者在運動過程中有很大 的幫助。
  • Item
    以深度學習為基礎之視覺式行人危及行車安全程度評估系統
    (2021) 曾永權; Tseng, Yung-Chuan
    交通工具的進步使往返各地越來越方便,但也帶來許多交通事故。根據台灣內政部統計年報[4]統計,諸多交通事故造成台灣每年數十萬人傷亡,其中又以道路上弱勢行人受到的傷害為大。故本研究提出以深度學習為基礎之視覺式行人危及行車安全程度評估系統。該系統利用行車紀錄器影片作為輸入,用於主動式安全駕駛輔助,辨識行人危及行車安全程度,提前警告駕駛注意行人,希望能藉此降低車禍事故發生。本研究首先對行人危及行車安全程度進行分析以及定義,將行人危及行車安全程度依據行人與攝影機距離、行人在影像中位置、行人面朝方位、行人是否移動、是否逆光5種條件分為14種情況,並將這14種情況對應到安全、低危險、中危險、高危險共4種類別。之後,本系統使用YOLOv4類神經網路模型作為骨架,進行YOLOv4的組合測試,並以前、後處理的方式進行改良。本研究最終提出Single YOLOv4、Two-stage Training YOLOv4以及Parallel YOLOv4三種流程。Single YOLOv4直接以行人危及行車安全程度進行訓練,預測時加入後處理方法刪除過度重疊的預測框。Two-stage Training YOLOv4先針對影像中「人」進行訓練,再利用此權重學習行人危及行車安全程度,預測時利用第二階段學習到的權重進行預測並刪除過度重疊的預測框。Parallel YOLOv4訓練及測試時採用兩個YOLOv4,一YOLOv4以「人」進行訓練,一YOLOv4以行人危及行車安全程度進行訓練,預測時將兩個YOLOv4各自過度重疊的預測框刪除後合併預測結果。本研究使用的測試資料庫之影片皆為作者親自拍攝,拍攝地區為新北市中永和地區,命名為Pedestrian-Endanger-Driving-Safety Evaluation Dataset。本研究所開發的行人危及行車安全程度系統將輸出一段影片,影片中含有行人的預測框,預測框上方有預測之危及行車安全程度,並根據4種不同危及行車安全類別,給予每個預測框不同顏色,用於區分危及行車安全程度。本系統以F1-measure作為正確率評估方式,最終獲得71.2%的正確率。
  • Item
    以BERT-CNN模型進行建議句探勘
    (2021) 房昱翔; Fang, Yu-Hsiang
    隨著智慧型手機、行動網路的普及,民眾每天接收到的訊息量與日俱增,其中評論占據了很大一部份,不同於氣象預報、股票市值這些僅能夠單方面接收的資訊,評論往往是由民眾主動去搜尋及撰寫的,舉凡食、衣、住、行、育、樂,許多民眾已經養成先上網搜尋相關評論後再做決定的習慣,本研究希望透過深度學習的方法,將大量的網路評論,在進行完整分析後作出適當的分類。本研究使用的資料集來自於2019年舉辦的國際自然語言語意評測競賽(Semantic Evaluation 2019, SemEval 2019)中的Task 9,該資料集中的評論可分為建議句(suggestion)及非建議句 (non suggestion),將其進行前處理後與類神經網路模型進行連接,其中用到了由Google公司於2018年提出的BERT (Bidirectional Encoder Representations from Transformer)及卷積類神經網路(Convolutional Neural Networks, CNN)。本研究將對該競賽項目的子任務A進行實驗,評估方式採用正確率(Precision) 及F1分數(F1-measure, F1),其中驗證資料集同樣來自SemEval主辦方,並會與當年參加競賽的隊伍進行比較。
  • Item
    使用加上額外特徵的語言模型進行謠言偵測
    (2021) 陳信睿; Chen, Xin-Rui
    本篇論文提出一個強健語言模型加上額外特徵的系統,處理SemEval 2019RumourEval: Determining rumour veracity and support for rumours (SemEval2019 Task 7),主要包含了兩個任務,任務A 為 使用者的立場偵測,任務B偵測謠言是真、假或未驗證, 本研究利用到了對話分支的追蹤資訊,使用強健的預訓練語言模型與詞頻特徵,加上報導其他特徵的深度學習預訓練模型,結合兩者的預測結果,做出任務A的立場驗證,其Macro F1達到62%,再透過規則模型處理任務B的消息驗證,達到 Macro F1 68%,且 RSME降到0.5983。