學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912
Browse
12 results
Search Results
Item 利用 Radius Neighbors Regressor 模型預測台灣股市加權指數並賦予強弱指標(2024) 黃昱凱; Huang, Yu-Kai股票投資是現代人在累積資產上不可或缺的工具,雖然投資理財有賺有賠,但是若能夠找到一套良好的交易策略,以及善用各種分析工具,達到長期穩定獲利也是一件可以期盼的事情。本論文使用Radius Neighbor Regressor之機器學習方法並結合個人之股票交易經驗,在特定時間窗口之大盤強弱指標以及大盤中長期的多空頭判斷上取得了良好的結果。在實作上,我們使用Radius Neighbor Regressor與個人交易經驗所挑選出的特徵值作為產生強弱指標的依據。資料收集樣本時間為2013/1/25~2023/12/21,總共2668個交易日。主要資料來源取自XQ全球贏家之資料庫,並且使用所經加權後的強弱指標分別在幾種預測時間的長短進行比較與分析。從實驗結果驗證,我們發現使用Radius Neighbor Regressor搭配個人交易經驗所挑選出的特徵值,在以60個交易日預測後20個交易日的結果準確率高達73%,且在傳統多空頭的分析上也得到了良好的結果。另外,還證明了在特徵值選擇上以個人交易經驗做選擇的優勢,最後也彌補了單純使用Radius Neighbor Regressor機器學習方法的缺點,得出最佳的一種大盤強弱指標之模型。Item 基於身體座標點與矩陣轉換之注視點估計研究(2024) 李柏毅; Lee, Bor-YiItem 基於追蹤補償方法之籃球球員追蹤(2024) 陳宥睿; Chen, You-Ruei現今資訊科技蓬勃發展,電腦視覺技術經常應用於我們生活的周遭,而物件追蹤更是一項關鍵的技術,應用於自駕車、智慧行人追蹤和體育運動項目等領域。以籃球比賽中的球員為例,透過鏡頭追蹤球員在球場上的移動軌跡,可以對比賽進行詳細分析。針對現有的一般追蹤方法(YOLOv7+StrongSORT),由於球員間的遮擋或重疊,常常會發生球員ID變換(ID Switch)且無法復原該球員原有的ID(Identifier)的情況。為了解決這一問題,我們提出了追蹤補償方法,該方法能在ID變換時匹配回先前的ID,從而提升球員追蹤的準確性。 在實驗結果中,我們選擇了在一般追蹤方法之下加入球員追蹤補償方法的架構(實驗組)以及僅使用一般追蹤方法的架構(對照組)進行比較。在MOTA(Multiple Object Tracking Accuracy)的數據上,對照組與實驗組的表現都高於90%。在評估球員ID變換時復原球員ID的整體ID變換復原率(ID Switch Recovery Rate)上,使用球員追蹤補償方法的實驗組得到了74%的整體ID變換復原率,而對照組只有48%。在整體追蹤準確度上,實驗組的IDF1(Identification F-Score)達到79%,而對照組則只有66%。從數據結果表明,使用球員追蹤補償方法後,整體ID變換復原率有明顯的提升,能夠減少球員ID在變換後無法復原的問題,從而使得在整體追蹤準確度上,IDF1得到顯著提升。Item 腳底壓力辨識系統對於穿著不同鞋種的機器學習與特徵組合之研究(2023) 許家維; Hsu, Chia-Wei物聯網應用在近年生活中越來越廣泛,像是智慧型手機、智慧手錶與電腦等,皆讓人類的生活更加便利,為了快速且更安全的身分認證來解鎖相關設備,生物辨識技術扮演了非常重要的角色,此技術相較於傳統文字密碼而言,不易被偽造且安全度較高。在過去的腳底壓力分析的研究中,大多皆以赤腳為主要實驗條件,對於在多鞋種相關的條件下研究較少,其使用成本較高的設備進行研究,因設備成本較高對於腳底壓力辨識技術廣泛的應用較為困難。本論文主要在探討受測者穿著多鞋種的情況下,使用腳底壓力辨識技術搭配機器學習與特徵進行身分辨識,最終分析不同機器學習與多特徵組合之辨識率、訓練時間和鞋種。實驗結果顯示使用隨機森林 (Random Forest, RF)在多鞋種實驗中可以達到最佳辨識率77%,訓練時間為2.83秒是所有機器學習中訓練時間最快;其在單一鞋種實驗中可以達到86%辨識率並發現慣用鞋能有更高辨識率。Item 平行處理和CPU頻率縮放對於腳底壓力辨識系統之省電研究(2023) 陳君三; Chen, Chun-San由於近年來生物辨識技術的興起,讓簽名認證方式不限於以往的帳號密碼,不僅讓生活更為便利且其安全程度也更為可靠。其中,步態辨識在醫療、運動、安全等等領域都有相關研究,我們可以從每個人的腳底獲取許多隱私資訊,根據每個個體不同的運動規律、踩踏重心以及個體大小來進行個體識別。在步態辨識領域中的腳底壓力分析的相關文獻裡,實驗或實作方式大多是以室內插座對電腦進行供電,因此省電方面的研究無人著墨。但當在無插座電源供電的情形下進行應用或實作時,腳底壓力辨識系統就會受到耗電量方面上的限制。因此我們的研究是針對嵌入式系統搭配腳底壓力辨識平台,在沒有室內插座供電的情形下進行省電的研究。我們對部分程式進行平行處理,並從機器學習演算法、CPU頻率模式、和變更核心數的角度對省電比例的影響進行分析,最後針對耗電量進行觀察與解析,並列出了最佳省電和最低耗電量兩種組合。實驗結果顯示,我們所使用的省電方法在四核心訓練階段省電比例可以達到7.02%,辨識階段的省電比例可以達到30.12%。Item 基於斑馬魚運動軌跡之行為分類系統(2023) 唐黛玲; Tarng, Dai-Ling有關人類疾病的研究長久以來被人們所重視,由於斑馬魚基因與人類相近且可以被快速繁殖,斑馬魚在相關研究上扮演著重要的角色。斑馬魚經常被用來研究藥物與毒物對神經系統與行為的影響,斑馬魚已經被用來模擬過阿茲海默症、腦癌、癲癇、焦慮症以及肝臟疾病。然而目前研究斑馬魚的實驗經常需要仰賴肉眼或是昂貴商用軟體器材紀錄斑馬魚的運動軌跡,並做簡單的分析。因此進行斑馬魚實驗所需的時間、人力與金錢成本,使斑馬魚實驗變得複雜。本研究提出了一套斑馬魚行為模式分類系統Zebrafish Behavior Classification (ZBC) System,該系統能以軌跡資料對斑馬魚的行為進行分類。根據斑馬魚的啃咬、追逐、展示和正常等四種行為模式,我們提出了七種軌跡特徵的計算方法。這七種軌跡特徵包括軌跡相似度、總移動距離、平均幀間移動距離、最大和最小幀間移動距離、移動向量加總、最大和最小幀間移動距離向量,以及移動方向同方向的時間佔比。本系統會在計算七種軌跡特徵前先運用三種濾波方式清理軌跡資料,而七種軌跡特徵將用來訓練斑馬魚行為自動分類模型。 本研究比較了支持向量機 (Support Vector Machine, SVM)、隨機森林 (Random Forest, RF) 和極限梯度提升 (eXtreme Gradient Boosting, XGBoost) 等三種模型在斑馬魚行為自動分類模型上的準確度表現,同時我們也比較了均值濾波、中值濾波與卡爾曼濾波等三種資料清理方法運用在模型上的準確度表現。實驗結果顯示出ZBC在分類高度、中度和低度攻擊性的行為上能達到76%的準確度。另外,我們的研究發現不同資料清理方法和模型的搭配會影響分類的準確度,隨機森林在分類效果整體上有最高的準確度,而資料清理方法則須依照情況選擇。Item 腳底壓力辨識系統對於受測者在不同負重支撐點與重量之分析與研究(2021) 楊瑀婕; Yang, Yu-Chieh近年來,隨著物聯網應用的興起,網絡通訊不只侷限在手機與電腦間,除了帶來人類生活的便利外,資訊安全的議題也逐漸被重視,因而延伸出具唯一性的生物識別技術,生物辨識的簽名認證有別於傳統的文字或圖像式的帳號與密碼,其不易被偽造的特性也使得安全程度變得更為可靠。在過去的腳底壓力分析的研究中,比較少有提及與探討受測者在身體不同位置處攜帶負重,對於受測者攜帶不同重量的負重的研究也較無著墨。本論文主要在於探討受測者在赤腳情況下於,右側攜帶不同重量的負重與後側攜帶不同重量的負重對於搭配機器學習的腳底壓力感測技術的辨識度和模型訓練時間的影響的分析與研究。實驗結果顯示使用平均腳底壓力資料與攜帶大負重量會提升腳底壓力的辨識率。Item 應用於遠距教學之學習專注程度偵測研究(2020) 陳文賢; Chen, Wen-Xian本研究進行學習專注度偵測的研究,藉由專注度偵測降低因為不專注導致學習進度的落後,並且將研究應用在較需要偵測專注度的遠距教學環境。本研究提出藉由人臉偵測和機器學習判斷影片中每張影像人臉的視線位置,透過發呆偵測以及臉部位移偵測取得動作資訊,使用影像分段處理以及滑動窗口處理連續性的影像,將影片的每個區段判斷成專心或不專心的狀態。 實驗資料來源包括高中補習班補課以及大學遠距教學兩種不同類型的學習影片,實驗結果發現專心行為判定的準確度為93%,不專心行為判定的準確度為81%。由結果得知本研究方法能有效地偵測到出現不專心行為的時間,透過臉部位移偵測方法也能避免做筆記的行為被判定為不專心。Item 腳底壓力辨識系統結合機器學習之分析與研究(2019) 陳建翰; Chen, Chien-Han由於近年來生物辨識技術的興起,讓認證方式不再同於以往的帳號密碼,不僅使生活更為便利且其安全程度也更為可靠,不過在廣大的生物辨識市場之中,系統成本與辨識度考量下要如何達成平衡一直都是辨識系統難以普及化的重點議題之一,在過去研究發現,系統在特徵提取的結果與系統著重於機器學習效果的比例較少,在訓練時所耗費的成本也較無研究。本論文主要在於研究探討分析腳底壓力資訊取出特徵,並與機器學習搭配組合,創造出快速取得腳底壓力資訊且快速訓練且擁有高準確率的系統模組,接著並進一步根據系統辨識率與感測器感測狀況來調整數量達到節省成本的目的。實驗結果顯示我們所開發的系統不僅在辨識結果上有不錯的成績,在訓練處理時時間與辨識時間上也能達到良好的效果,成本上也比先前的便宜,並獲得對此系統普及化與實作上有助的資訊。Item LSTM法則應用於連續手勢辨識之研究──訓練系統軟體及辨識系統FPGA之實作(2018) 廖振瑋; Liao, Zhen-Wei本論文用LSTM類神經網路模型來做連續手勢之訓練及辨識系統,並且以FPGA來完成手勢辨識系統之硬體化實現。 資料蒐集方面,我們使用智慧型手機取得其內部感應器中的三維加速度器及三維陀螺儀數值做為我們的訓練資料及辨識資料。訓練及辨識方面,透過Keras平台對手機端蒐集的資料做訓練跟辨識,接著我們以C以及JAVA重建辨識系統,來協助此系統On-line及硬體化的實現。 辨識系統我們有著百分之九十八的辨識準確率,並且在完成的硬體電路有著低面積及低資源消耗。在高準確率跟低資源消耗的優點下,大大增加了本篇論文的應用性及實用性。例如可以與娛樂結合,讓玩家能透過感應器藉著手勢的揮舞做出移動或是攻擊的動作而不必透過按鈕,增加遊玩的真實感。