學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912
Browse
2 results
Search Results
Item 網頁搜尋結果重要面向事實內容自動擷取之研究(2014) 葉懿萱本論文的主要研究目的為,透過使用者給定的查詢字以及指定面向關鍵字,從大量的查詢回傳結果中,自動摘要出重要的面向資訊提供給使用者,讓使用者能快速得到所需的面向資訊。為了避免下載所有查詢結果文件並處理需花費相當多的時間,因此本論文採用查詢結果回傳的文件片段內容(snippets),作為探勘查詢字相關資訊的資料來源。本研究提出一個稱為SR-Summarization的方法,利用字詞在各面向查詢回傳結果中的分佈特性,提出評估字詞與查詢關鍵字的一般面向分數以及面向代表性分數的計算公式,進而評估一個句子的一般面向及面向代表性分數。此外,方法中也提出評估句子事實資訊性的計算公式,採用機器學習方法評估句子的品質好壞。最後,採用結合摘要內容的資訊量及內容多樣性為機制的句子挑選依據,產生"查詢字一般面向資訊”摘要,以及指定面向之”面向事實資訊”摘要。實驗結果顯示,本研究之方法能夠有效擷取出網頁搜尋結果中的重要面向事實內容,透過使用者問卷調查顯示,相較於相關研究的方法,使用者對於本研究方法找出的摘要結果有更高的滿意度。Item 分析旅遊評論中之極性不一致性問題(2019) 林彤; Lin, Tung近年來,隨著網際網路的發展,消費者能夠在消費之後,在網路平臺上面發表自己對於此次消費的滿意程度,並留下評分供有需求的使用者參考。 本研究目的在於觀察旅店的評論內容和顧客傾向中的不一致性,評論文本內容普遍存在兩個典型的特徵,星星和評論文本內容。評論的文本內容提供了文字用以解釋給分說明,當星星和評論內容對稱(即星等和內容一致)時,會在消費者閱讀購物經驗中加深印象,且提升價值;反之,當評論內容的不確定性提高的時候,使得消費者失望和苦惱,對於消費者和企業,線上評論系統的價值也降低了。 本研究以lexicon-based的方法,不用透過人工標注的方式得到評論的極性,檢查評論當中所存在的不一致性。目的是要過濾評論文本內容傾向和使用者評分傾向不一致的評論,以提高評論資料的可信度。