Skip to main content
Communities & Collections
All of DSpace
Statistics
English
العربية
বাংলা
Català
Čeština
Deutsch
Ελληνικά
Español
Suomi
Français
Gàidhlig
हिंदी
Magyar
Italiano
Қазақ
Latviešu
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Српски
Svenska
Türkçe
Yкраї́нська
Tiếng Việt
Log In
Log in
New user? Click here to register.
Have you forgotten your password?
Home
理學院
資訊工程學系
學位論文
學位論文
Permanent URI for this collection
http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912
Browse
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
1 results
Back to results
Filters
Author
search.filters.author.Liu, Hao-Hsuan
1
search.filters.author.劉浩萱
Subject
search.filters.subject.Neural Network
1
search.filters.subject.AlpahZero
1
search.filters.subject.Quick Win
1
search.filters.subject.Threats-space Search
1
search.filters.subject.快贏策略
Show more
Search subject
Submit
Browse subject tree
Date
Start
End
Submit
2020
1
Has files
1
Yes
Reset filters
Settings
Sort By
Accessioned Date Descending
Most Relevant
Title Ascending
Date Issued Descending
Results per page
1
5
10
20
40
60
80
100
Search
Author: search.filters.author.Liu, Hao-Hsuan
×
Subject: search.filters.subject.Neural Network
×
Search Tools
Search Results
Now showing
1 - 1 of 1
No Thumbnail Available
Item
AlphaZero演算法結合快贏策略或迫著空間實現於五子棋
(
2020
)
劉浩萱
;
Liu, Hao-Hsuan
Show more
AlphaZero是一個通用的強化式學習之演算法,除了遊戲規則外毫無人類知識,經過訓練後會有極佳的結果。為了要讓此架構在訓練初期,就能夠成功學習到五子棋所需的獲勝資訊,本研究展示了快贏策略(Quick Win)與迫著空間。 快贏策略旨在讓類神經網路學習到快贏的價值,並且在各走步勝率相同時,能更傾向選擇可以快速獲得勝利的走步;迫著空間則是針對盤面的迫著做搜索,讓能產生迫著走步的資訊被類神經網路學習,以縮短訓練時間。 本研究以四種不同的實驗方式,包含線性距離權重、指數距離權重、結合迫著搜尋於距離權重,以及結合迫著搜尋於蒙地卡羅樹搜索法的方式,觀察AlphaZero為設計基礎的人工智慧模型,在對弈時是否因為選擇了更快獲勝的棋局走步或學會形成迫著,而有效增強棋力。
Show more