學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912
Browse
1 results
Search Results
Item 利用AlphaZero框架實作與改良MiniShogi程式(2020) 陳品源; Chen, Pin-Yuan2016年3月,DeepMind的AlphaGo程式以4:1的結果擊敗了當時韓國職業圍棋9段棋士李世乭,讓電腦對局的AI程式在強化學習的路上取得了巨大的突破與成就。隨後2017年10月更提出了AlphaGo Zero方法,以100:0的比數戰勝了原本的AlphaGo Lee程式,也證明了不用人類的棋譜當作先驗知識,就可以訓練出比人類還要更強的圍棋程式。而DeepMind最終把AlphaGo Zero方法一般化成了AlphaZero方法,也訓練出了當今世界棋力最強的西洋棋與將棋程式。但相對的,DeepMind也運用了非常龐大的運算資源來訓練,才得到了最強的棋力。 本論文所研究的棋類為1970年楠本茂信所發明的5五將棋,5五將棋是一種將棋變體,特色是棋盤大小比本將棋還要小,只有5×5的盤面,將棋則有9×9,所以5五將棋是很適合一般人在硬體資源有限的情況下,來實作電腦對局的AI程式項目。 本實驗是使用AlphaZero的演算法,搭配AlphaZero General框架來實作出使用神經網路搭配強化學習來訓練的AI程式,而我們也搭配了一些已知的優勢策略做改良,讓我們可以在有限的硬體資源下,增進神經網路模型的訓練效率。 在5五將棋的訓練中,我們使用兩種方法去做改良,第一種方法是依盤面的重要性對樣本做採樣,設定中局會比終盤與開局還要高的採樣機率,期待能讓神經網路學習下中盤棋局時能比一般的版本下的更好。 第二種方式是用能贏直接贏的方式去訓練,藉由提前一回合看到終局盤面,來達到Winning Attack的效果,因為MCTS在下棋時,即便是遇到能分出勝負的走步,不一定會走出能分出勝負的那一步,導致神經網路權重會收斂的很慢,而藉由此方法,可以比一般的訓練方法還要快的收斂。 本研究所採用的兩個方法是一個成功一個失敗的結果,以實驗數據來說,如果取樣取的好,是有機會提升棋力的,但數據的表現上除了一組數據外,其他數據皆不盡理想;而Winning Attack的棋力提升的數據就非常顯著了,不過兩種方法搭配起來一起訓練時,雖然也會提升棋力,但是兩個方法沒有互相加成的效果。